# EpconG5

High-Strength Epoxy Adhesive





# **CONTENTS**

| Corporate Profile                       |    | 3  |
|-----------------------------------------|----|----|
| Product Information                     |    | 4  |
| Installation Instructions               |    | 5  |
| On-Site Tensile Pull-out Test Procedure |    | 6  |
| Material Safety Data Sheet              |    | 7  |
| Design Guide                            |    | 9  |
| Rebar (FE460)                           | 9  |    |
| Anchor Stud (G5.8) / Chemset™           | 9  |    |
| Anchor Stud (G8.8) / Chemset™           | 22 |    |
| Anchor Stud (SS316) / Chemset™          | 26 |    |
| Test Reports & Approvals                |    | 30 |
| Project References                      |    | 37 |



### PRODUCT INFORMATION

### Epcon G5 -- High Strength Epoxy



You don't have to waste your valuable time waiting for longer cure times or waste money disposing of dried up nozzles. The Epcon G5 is the solution to your problem.

The epoxy resin and hardener are thoroughly and evenly mixed as they are dispensed from the dual cartridge through a static mixing nozzle, directly into the anchor hole.

With an extended working time (15 minutes) and a full cure in less than 2 hours, your crew can work more efficiently saving you time and money.

### Advantages

HIGH PERFORMANCE EPOXY: Shallower embedment depth required

FIRE RESISTANT STRUCTURES: Tested up to 4 hours FRP by Warrington (BS 476 Part 20)

EXTENDED WORKING TIME: 15-minute nozzle life at 20°C, 2-hour cure time at 20°C

COST SAVINGS: Less delay of work, Less nozzles used

LOW SHRINKAGE: Suitable for cored and oversized holes

NON-OFFENSIVE ODOR: Virtually odorless, can be used indoors

WATER INSENSITIVITY: Works in damp holes and underwater applications

### **Specifications**

#### **EPOXY CHEMICAL:**

- Two component, 100% solids (containing no solvents), nonsag paste, insensitive to moisture, grey in colour
- Meets ASTM C881-99, Type IV, Grade 3 with the exception of gel time
- Shrinkage during cure per ASTM D2566: 0.00004 in./in
- Compressive strength, ASTM D695: 71 MPa minimum
- Heat Deflection Temperature: 62 C minimum
- Water solubility: None
- Shelf Life: Best if used within 18 months

#### **PACKAGING:**

- Disposable, self-contained 650mL cartridge system capable of despensing both epoxy components in the proper mixing ratio.
- Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material and places the epoxy at the base of the pre-drilled hole.
- Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions.



### **INSTALLATION PROCEDURE**



 Drill a hole with a Ramset Power Tool and Drill Bit to the required hole diameter and depth as indicated in the Ramset Design Guide.



Remove initial debris caused by the drilling action with a hand blower or air compressor.



3. Use a wire brush to dislodge excess debris on the surrounding surface of the hole.



4. Repeat steps 2 and 3



5. Remove the cap of the Ramset Epcon G5 cartridge and attach the static mixer provided.



6. Put the Ramset Epcon G5 cartridge into the hand dispenser tool.



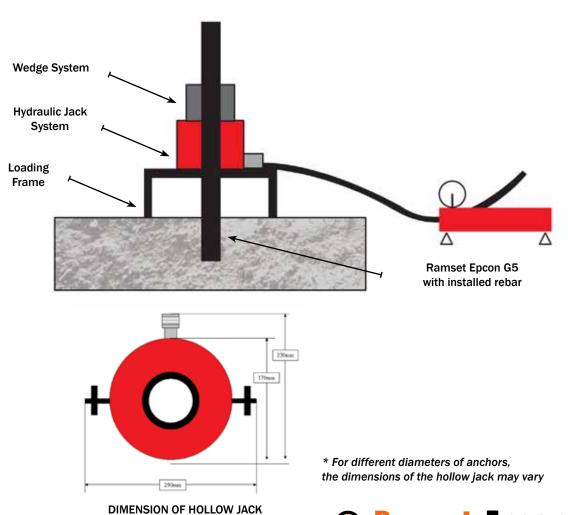
7. Dispense the chemical initial mix until the colour is consistent.



8. Pump the chemical into the hole until it is half-filled.



 Insert the rebar/stud into the hole in a twisting motion to ensure that the rebar/stud is fully coated with the chemical.




### **TESTING PROCEDURE**

### METHOD STATEMENT FOR NON-DESTRUCTIVE TENSILE TEST ON RAMSET EPCON G5 CHEMICAL WITH REBARS INSTALLED

- Prior to carrying out the test, the test equipment (Hydraulic Jack System with calibration certification attached) must be setup in position according to BS5080 Part 1.
- The loading frame is placed through the rebar and sits directly on the base concrete. The appropriate type of hydraulic jack is mounted on top of the loading frame and wedged in place with a corresponding wedge system to engage the rebar tightly at the end of the setup before applying the load.
- A central load is applied gradually by means of the hydraulic jack system, via a hollow piston cylinder onto the wedges to create a reaction force equaling to a tensile pull-out effect, up to the required design test load.
- 4. The load achieved is indicated in the calibrated pressure gauge, usually expressed in KiloNewtons (kN) for ease of load determination. During or at the end of the loading, the achieved load and the mode of failure, if any, are recorded in the field test record form. The recorded field test record form shall be acknowledged by all parties present, namely the tester, the contractor and the consultant and shall form part of the final test report to be submitted to the contractor for filing purpose.

#### **TEST SETUP (N.T.S.)**



Ramset EpconG5

### MATERIAL SAFETY DATA SHEET

**PAGE 1 OF 2** 





**Product Name:** G5 Epoxy Adhesive **Date Prepared:** July, 2007

**Description: Part A:** Epoxy Resin **Part B:** Amine Hardener **General Use:** Chemical anchor used for commercial construction.

Manufacturer: ITW Red Head ⋅ 2171 Executive Drive, Suite 100 · Addison, IL 60101

**Emergency Number:** 1-800-424-9300

#### **Ingredients and Exposure Limits**

| Ingredients                     | CAS Number | TLV: | PEL: | STEL |
|---------------------------------|------------|------|------|------|
| Part A: Bisphenol A Epoxy Resin | 25068-38-6 | NE   | NE   | NE   |
| Part B: Amine Blend             | *          | NE   | NE   | NE   |

<sup>\*</sup> An asterisk indicates a substance whose identity is a trade secret of our supplier

**Abbreviations:** TLV = ACGIH Threshold Limit Value PEL = OSHA Permissible Exposure STEL = Short Term Exposure Limit NA = Not Applicable NE = None Established

#### **Physical Properties**

|                  | Part A: Beige Paste                                       | Part B: Gray Paste                                        |
|------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Specific Gravity | $= 1.2 \text{ g/cm}^3 \text{ (at } 20^{\circ} \text{ C)}$ | $= 1.7 \text{ g/cm}^3 \text{ (at } 20^{\circ} \text{ C)}$ |
| Boiling Point    | = > 400° F                                                | = > 212° F                                                |
| Water Solubility | None                                                      | None                                                      |

#### **Safe Handling Procedures**

**Handling and Storing Precautions:** For professional use only. Keep away from children. Avoid contact with the eyes and skin. Wash after using and before eating or smoking. Avoid breathing vapors. Use only as directed; avoid uncontrolled mixing with other materials, esp. polymerizable or combustible materials.

**Storage:** For maximum shelf life, store in a cool dry area between 40° F and 80° F. Do not store above 110° F **Spill Procedures:** Collect with an absorbent material and place in a container for proper disposal. For large spills, transfer to salvage vessels, and dispose of according to state, local and Federal regulations. Flush area with water to remove residue.

#### **Personal Protection**

Ventilation: Use in well ventilated areas.

**Eye Protection:** Wear safety glasses with side shields.

Skin Protection: Impermeable (neoprene or rubber) gloves are recommended.

**Respiratory Protection:** None normally required. Where ventilation is inadequate to control vapors, use a NIOSH/OSHA approved respirator with organic vapor cartridges. Do not enter confined spaces without an appropriate air supplied respirator.

#### **Health Information**

Part A: Eye and skin irritant. Possible skin sensitizer. May be irritating to eyes, skin, nose and throat.

Part B: Corrosive. May cause eye and skin burns. Vapors may be irritating. May cause burns if swallowed.

Routes of Exposure: Contact. Inhalation.

**Medical Conditions Aggravated by Exposure:** Eye, skin and respiratory conditions. **Carcinogenicity:** No ingredients are classified as carcinogens by IARC, NTP or OSHA

Hazard Categories: Immediate health hazard; delayed health hazard

#### **First Aid Measures**

Eyes: Flush immediately with water for at least 15 minutes. Seek medical advice.

**Skin:** Wash immediately with soap and water. Launder contaminated clothing before reuse.

**Inhalation:** If symptoms occur, move to fresh air. Call a physician if symptoms persist.

Ingestion: Rinse mouth and then drink large quantities of water. Don't give anything by mouth to an unconscious

person. Seek medical attention. Do not induce vomiting unless directed by a physician.

Other: Referral to a physician is recommended if there is any question about the seriousness of the exposure.



### MATERIAL SAFETY DATA SHEET

PAGE 2 OF 2





#### **Stability and Reactivity**

Stability: Stable

Hazardous Polymerization: Will not occur.

**Incompatibility:** Strong acids and oxidizing agents.

**Decomposition Products:** Thermal decomposition can yield COx, NOx, water and carbon.

Conditions to Avoid: Avoid elevated temperatures which may shorten the shelf-life of this product.

#### **Fire and Explosion Hazard Information**

Flash point: > 212° F

Flammable Limits: Not applicable

**Extinguishing Media:** CO<sup>2</sup>, Dry Chemical, Foam, and Water Spray.

**Special Fire Fighting Procedures:** Use self-contained breathing apparatus.

Unusual Fire and Explosion Hazards: Thermal decomposition products can be formed including carbon

monoxide, sulfur and nitrogen oxide and other fumes and vapors.

Material will not burn unless pre-heated. Do not enter confined space without full bunker gear. Firefighters should

use self-contained breathing apparatus and protective clothing.

#### **Federal Regulatory Status**

#### **Regulatory Information**

Hazard Communication: This MSDS has been prepared in accordance with the federal OSHA Hazard

Communication Standard 29 CFR 1910.1200.

**HMIS Codes:** Health 3, Flammability 1, Reactivity 0, PPE B **DOT Shipping Name:** Consumer commodity, ORM-D

**UN#:** 2735

**Hazard Class:** 8 Corrosives

**Emergency Response Guide #153** 

**TSCA Inventory Status:** Chemical components are listed on TSCA inventory or are exempt as impurities. **SARA Title III, Section 313:** This product contains an Amine Blend which is subject to reporting under

Section 313 or SARA Title III (40 CFR Part 372).

**EPA Waste Code(s):** Not regulated by EPA as a hazardous waste.

**Waste Disposal Methods:** If this material becomes a waste, it would not be hazardous waste by RCRA criteria (40CFR261). Dispose according to federal, state and local regulations.

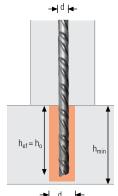
Canadian Regulations: WHMIS hazard class: D2B.

Canadian EPA: All ingredients are listed on the DSL or are exempt as impurities.

The information and recommendations in this document are based on the best information available to us at the time of preparation. We make no other warranty, expressed or implied, as to its correctness or completeness, or as to the results or reliance of this document.

### **DESIGN GUIDE**

**PAGE 1 OF 9** 


### REBAR (FE460)





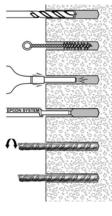
#### ICC-ES EVALUATION REPORT

| Technical Data                  |                     |       |       |       |       |       |       |       |       |       |       |
|---------------------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| EPCON G5                        |                     | T8    | T10   | T12   | T13   | T16   | T20   | T25   | T28   | T32   | T40   |
| Dowel depth (mm)                | h <sub>ef,min</sub> | 80    | 90    | 110   | 110   | 125   | 170   | 210   | 270   | 300   | 400   |
| Ø bar (mm)                      | d                   | 8     | 10    | 12    | 13    | 16    | 20    | 25    | 28    | 32    | 40    |
| Ø dri <b>ll</b> bit (mm)        | do                  | 12    | 13    | 15    | 16    | 20    | 25    | 30    | 35    | 40    | 50    |
| Drill depth (mm)                | ho                  | 80    | 90    | 110   | 110   | 125   | 170   | 210   | 270   | 300   | 400   |
| Min thick of base material (mm) | h <sub>min</sub>    | 100   | 113   | 138   | 138   | 156   | 213   | 263   | 338   | 375   | 500   |
| Ramset power tool code          |                     | DD544 | DD544 | DD544 | DD544 | DD565 | DD565 | DD565 | DD565 | DD576 | DD576 |
| Drill bit type-size             |                     | R3    |
|                                 |                     | PLUS- | PLUS- | PLUS- | PLUS- | MAX-  | MAX-  | MAX-  | MAX-  | MAX-  | MAX-  |
|                                 |                     | 12    | 13    | 16    | 16    | 20    | 25    | 30    | 35    | 40    | 50    |



EPCON G5 Two part cartridge, 100% epoxy resin - vol. 650ml

Setting Time before applying load


Ambient temperature (°C)

| Anchor Mechanical Properties                                   |      |      |       |       |       |       |       |       |       |         |  |
|----------------------------------------------------------------|------|------|-------|-------|-------|-------|-------|-------|-------|---------|--|
| Rebar FE460                                                    | T8   | T10  | T12   | T13   | T16   | T20   | T25   | T28   | T32   | T40     |  |
| <b>f<sub>yk</sub></b> (N/mm²) Yield strength                   | 460  | 460  | 460   | 460   | 460   | 460   | 460   | 460   | 460   | 460     |  |
| <b>A<sub>s</sub></b> (mm <sup>2</sup> ) Stressed cross-section | 50.3 | 78.6 | 113.1 | 132.7 | 201.1 | 314.2 | 490.9 | 615.8 | 804.4 | 1,256.8 |  |
| <b>N</b> <sub>Rk,s</sub> (kN) Charactieristic Yield            | 23.1 | 36.1 | 52.0  | 61.1  | 92.5  | 144.5 | 225.8 | 283.3 | 370.0 | 578.1   |  |
| <b>N<sub>Rd,s</sub></b> (kN) Design Yield                      | 20.1 | 31.4 | 45.2  | 53.1  | 80.4  | 125.7 | 196.4 | 246.3 | 321.7 | 502.7   |  |

#### MATERIAL Grade 460 steel

|          | Max time for installation (min) | Waiting time before applying load (hr) |
|----------|---------------------------------|----------------------------------------|
| 32°C     | 8.5                             | 2                                      |
| 27°C     | 12                              | 2                                      |
| <br>20°C | 15                              | 2                                      |
| 16°C     | 18                              | 3                                      |
| 10°C     | 21                              | 6                                      |
|          |                                 |                                        |

#### INSTALLATION



| <b>Chemical Resistance of EPCON</b> | G5 Anchor  |                         |            |
|-------------------------------------|------------|-------------------------|------------|
| Chemical substances                 | Resistance | Chemical substances     | Resistance |
| Xylene                              | 1          | Toluene                 | 2          |
| Gasoline                            | 1          | 10% Nitric Acid         | 2          |
| 20% Caustic NaOH (Sodium Hydroxide) | 1          | 8.5% Ammonium Hydroxide | 2          |
| Fresh water                         | 1          | 5% Bleach               | 3          |
| Salt Water                          | 1          | Acetone                 | 3          |
| 10% Sulfuric Acid (H2 SO4)          | 2          | Glacial Acetic Acid     | 3          |
| 3.5% Hydrochloric Acid (HCL)        | 2          | Methanol                | 3          |
| 9% Phosphoric Acid                  | 2          | Methylene Chloride      | 3          |

- 1 = High resistance (Anchors could be submerged in these materials)
- 2 = Medium resistance (Anchors could be temporary submerged due to splash or spill)
- 3 = Low resistance (Anchors should be limited to splash and spill followed by immediate cleanup)

### **DESIGN GUIDE**

**PAGE 2 OF 9** 

### REBAR (FE460)

| Number of Anchors per cartridg | е     |      |      |      |      |     |     |     |     |
|--------------------------------|-------|------|------|------|------|-----|-----|-----|-----|
| Rebar diameter                 | 10    | 12   | 13   | 16   | 20   | 25  | 28  | 32  | 40  |
| Drilling Ø (mm)                | 13    | 15   | 16   | 20   | 25   | 30  | 35  | 40  | 50  |
| Drilling depth (mm)            | 90    | 110  | 110  | 125  | 170  | 210 | 270 | 300 | 400 |
| No. of anchors per cartridge   |       |      |      |      |      |     |     |     |     |
| EPCON G5 (650ml)               | 108.8 | 66.9 | 58.8 | 33.1 | 15.6 | 8.8 | 5.0 | 3.4 | 1.7 |

#### Ultimate Loads ( $N_{Ru,m}$ , $V_{Ru,m}$ ) / Characteristic Loads ( $N_{Rk}$ , $V_{Rk}$ ) in kN

| TENSILE @ | Concrete strength | 30 N/mm <sup>2</sup> |
|-----------|-------------------|----------------------|
|-----------|-------------------|----------------------|

| Rebar size             | T8   | T10  | T12  | T13  | T16  |
|------------------------|------|------|------|------|------|
| h <sub>ef</sub> (mm)   | 80   | 90   | 110  | 110  | 125  |
| N <sub>Ru,m</sub> (kN) | 25.0 | 39.0 | 56.2 | 65.9 | 99.9 |
| N <sub>Rk</sub> (kN)   | 23.1 | 36.1 | 52.0 | 61.1 | 92.5 |
|                        |      |      |      |      |      |

| Rebar size             | T20   | T25   | T28   | T32   | T40   |
|------------------------|-------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm)   | 170   | 210   | 270   | 300   | 400   |
| N <sub>Ru,m</sub> (kN) | 156.1 | 243.9 | 305.9 | 399.6 | 624.4 |
| N <sub>Rk</sub> (kN)   | 144.5 | 225.8 | 283.3 | 370.0 | 578.1 |

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Rebar size             | Т8   | T10  | T12  | T13  | T20  |
|------------------------|------|------|------|------|------|
| V <sub>Ru,m</sub> (kN) | 15.0 | 23.4 | 33.7 | 39.6 | 59.9 |
| V <sub>Rk</sub> (kN)   | 13.9 | 21.7 | 31.2 | 36.6 | 55.5 |

| Rebar size             | T20  | T25   | T28   | T32   | T40   |
|------------------------|------|-------|-------|-------|-------|
| V <sub>Ru,m</sub> (kN) | 93.7 | 146.3 | 183.6 | 239.8 | 374.6 |
| V <sub>Rk</sub> (kN)   | 86.7 | 135.5 | 170.0 | 222.0 | 346.9 |

#### Design Loads ( $N_{Rd}$ , $V_{Rd}$ ) for one anchor without edge or spacing influence in kN

$$N_{Rd} = \frac{N_{Rk}}{\gamma_{Ms,N}}$$

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Rebar size           | Т8   | T10  | T12  | T13  | T16  |
|----------------------|------|------|------|------|------|
| h <sub>ef</sub> (mm) | 80   | 110  | 110  | 110  | 125  |
| N <sub>Rd</sub> (kN) | 15.4 | 24.1 | 34.7 | 40.7 | 61.7 |
|                      |      |      |      |      |      |

| Rebar size           | T20  | T25   | T28   | T32   | T40   |
|----------------------|------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm) | 170  | 210   | 270   | 300   | 400   |
| N <sub>Rd</sub> (kN) | 96.4 | 150.6 | 188.9 | 246.7 | 385.4 |

$$\gamma_{\rm Ms,N}$$
 = 1.5 (steel failure)

$$V_{Rd} = \ \frac{V_{Rk}}{\gamma_{Ms,V}}$$

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Rebar size           | Т8   | T10  | T12  | T13  | T16  |
|----------------------|------|------|------|------|------|
| V <sub>Rd</sub> (kN) | 11.1 | 17.3 | 25.0 | 29.3 | 44.4 |

| Rebar size           | T25  | T25   | T28   | T32   | T40   |
|----------------------|------|-------|-------|-------|-------|
| V <sub>Rd</sub> (kN) | 69.4 | 108.4 | 136.0 | 177.6 | 277.5 |

 $<sup>\</sup>gamma_{Ms,V} = 1.25$ 

#### Recommended Loads (N<sub>rec</sub>, V<sub>rec</sub>) for one anchor without edge or spacing influence in kN

$$N_{rec} = \frac{N_{Rk}}{\gamma_{Ms,N} \cdot \gamma_F}$$

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

|                       |      | -    |      |      |      |
|-----------------------|------|------|------|------|------|
| Rebar size            | T8   | T10  | T12  | T13  | T16  |
| h <sub>ef</sub> (mm)  | 80   | 90   | 110  | 110  | 125  |
| N <sub>rec</sub> (kN) | 11.0 | 17.2 | 24.8 | 29.1 | 44.0 |
|                       |      |      |      |      |      |

| Rebar size            | T20  | T25   | T28   | T32   | T40   |
|-----------------------|------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm)  | 170  | 210   | 270   | 300   | 400   |
| N <sub>rec</sub> (kN) | 68.8 | 107.5 | 134.9 | 176.2 | 275.3 |

$$\gamma_F = 1.4$$

$$\gamma_{Ms,N}$$
 = 1.5 (steel failure)

$$V_{rec} = \frac{V_{Rk}}{\gamma_{Ms,V} \cdot \gamma_F}$$

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Rebar size            | T8  | T10  | T12  | T13  | T16  |
|-----------------------|-----|------|------|------|------|
| V <sub>rec</sub> (kN) | 7.9 | 12.4 | 17.8 | 20.9 | 31.7 |

| Rebar size            | T20  | T25  | T28  | T32   | T40   |
|-----------------------|------|------|------|-------|-------|
| V <sub>rec</sub> (kN) | 49.6 | 77.4 | 97.1 | 126.9 | 198.2 |

$$\gamma_F = 1.4$$

$$\gamma_{\mathsf{Ms,V}} = 1.25$$

#### **RAMSET CC-Method**

#### **TENSILE** in kN



Pull-out resistance Concrete strength C25/30

$$N_{\text{Rd,p}} = N^0_{\text{Rd,p}} \cdot f_\text{B} \cdot f_\text{T}$$

| N <sup>0</sup> <sub>Rd,p</sub>      | Design pull-out resistance |      |      |      |      |  |  |
|-------------------------------------|----------------------------|------|------|------|------|--|--|
| Rebar size                          | T8                         | T10  | T12  | T13  | T16  |  |  |
| h <sub>ef</sub> (mm)                | 80                         | 90   | 110  | 110  | 125  |  |  |
| N <sup>0</sup> <sub>Rd,p</sub> (kN) | 14.8                       | 20.8 | 30.5 | 33.0 | 46.2 |  |  |

| N <sup>0</sup> <sub>Rd,p</sub>      | Design pull-out resistan |       |       |       |       |  |
|-------------------------------------|--------------------------|-------|-------|-------|-------|--|
| Rebar size                          | T20                      | T25   | T28   | T32   | T40   |  |
| h <sub>ef</sub> (mm)                | 170                      | 210   | 270   | 300   | 400   |  |
| N <sup>0</sup> <sub>Rd,p</sub> (kN) | 78.5                     | 121.2 | 174.5 | 188.1 | 278.8 |  |

$$\gamma_{\text{Mc,N}} = 1.8$$



Concrete cone resistance Concrete strength C25/30

$$\textbf{N}_{\text{Rd,c}} = \textbf{N}^{0}_{\text{Rd,c}} \cdot \textbf{f}_{\text{B}} \cdot \textbf{f}_{\text{T}} \cdot \boldsymbol{\Psi}_{\text{s}} \cdot \boldsymbol{\Psi}_{\text{c,N}}$$

| N <sup>0</sup> <sub>Rd,c</sub> | Design cone resistance |      |      |      |      |  |
|--------------------------------|------------------------|------|------|------|------|--|
| Rebar size                     | Т8                     | T10  | T12  | T13  | T16  |  |
| h <sub>ef</sub> (mm)           | 80                     | 90   | 110  | 110  | 125  |  |
| N <sup>0</sup> Rd.c (kN)       | 26.3                   | 31.4 | 42.5 | 42.5 | 51.4 |  |

| Nº <sub>Rd,c</sub>                  | Design cone resistance |       |       |       |       |  |
|-------------------------------------|------------------------|-------|-------|-------|-------|--|
| Rebar size                          | T20                    | T25   | T28   | T32   | T40   |  |
| h <sub>ef</sub> (mm)                | 170                    | 210   | 270   | 300   | 400   |  |
| N <sup>0</sup> <sub>Rd.c</sub> (kN) | 81.6                   | 112.0 | 163.3 | 191.3 | 294.5 |  |

$$\gamma_{\text{Mc,N}} = 1.5$$



Steel resistance

| $N_{Rd,s}$             | Steel design tensile resistance |      |      |      |      |  |
|------------------------|---------------------------------|------|------|------|------|--|
| Rebar size             | T8                              | T10  | T12  | T13  | T16  |  |
| N <sub>Rd,s</sub> (kN) | 15.4                            | 24.1 | 34.7 | 40.7 | 61.7 |  |
| $N_{Rd,s}$             | Steel design tensile resistance |      |      |      |      |  |
|                        |                                 |      |      |      |      |  |
| Rebar size             | T20                             | T25  | T28  | T32  | T40  |  |

 $\gamma_{Ms,N} = 1.5$ 

 $N_{Rd}$  = min ( $N_{Rd,p}$ ;  $N_{Rd,c}$ ;  $N_{Rd,s}$ )  $\beta N = N_{Sd} / N_{Rd} \le 1$ 

#### SHEAR in kN



Concrete edge resistance Concrete strength C25/30

$$\textbf{V}_{\text{Rd,c}} = \textbf{V}^{\textbf{0}}_{\text{Rd,c}} \cdot \textbf{f}_{\textbf{B}} \cdot \textbf{f}_{\beta, \textbf{V}} \cdot \Psi_{\textbf{s-c,V}}$$

| V <sup>0</sup> <sub>Rd,c</sub>      | Design concrete edge resistance at a minimum edge distance (c <sub>min</sub> ) |     |     |     |     |  |
|-------------------------------------|--------------------------------------------------------------------------------|-----|-----|-----|-----|--|
| Rebar size                          | Т8                                                                             | T10 | T12 | T13 | T16 |  |
| h <sub>ef</sub> (mm)                | 80                                                                             | 90  | 110 | 110 | 125 |  |
| C <sub>min</sub>                    | 40                                                                             | 45  | 55  | 55  | 63  |  |
| S <sub>min</sub>                    | 40                                                                             | 45  | 55  | 55  | 63  |  |
| V <sup>0</sup> <sub>Rd,c</sub> (kN) | 2.6                                                                            | 3.4 | 5.1 | 5.2 | 6.9 |  |

| V <sup>0</sup> Rd,c                 | Design concrete edge resistance at a minimum edge distance (c <sub>min</sub> ) |      |      |      |      |  |
|-------------------------------------|--------------------------------------------------------------------------------|------|------|------|------|--|
| Rebar size                          | T20                                                                            | T25  | T28  | T32  | T40  |  |
| h <sub>ef</sub> (mm)                | 170                                                                            | 210  | 270  | 300  | 400  |  |
| C <sub>min</sub>                    | 85                                                                             | 105  | 135  | 150  | 200  |  |
| S <sub>min</sub>                    | 85                                                                             | 105  | 135  | 150  | 200  |  |
| V <sup>0</sup> <sub>Rd,c</sub> (kN) | 12.4                                                                           | 18.9 | 30.0 | 37.4 | 65.2 |  |

 $\gamma_{Mc,V} = 1.5$ 



Steel resistance

| Steel design shear resistance |        |            |  |  |
|-------------------------------|--------|------------|--|--|
| 0 T12                         | T13    | T16        |  |  |
| .3 25.0                       | 29.3   | 44.4       |  |  |
| 1                             | 10 T12 | 10 T12 T13 |  |  |

| $V_{Rd,s}$             | Steel design shear resistance |       |       |       |       |
|------------------------|-------------------------------|-------|-------|-------|-------|
| Rebar size             | T20                           | T25   | T28   | T32   | T40   |
| V <sub>Rd,s</sub> (kN) | 69.4                          | 108.4 | 136.0 | 177.6 | 277.5 |

 $\gamma_{Ms,V} = 1.25$ 



Concrete pry-out failure Concrete Strength C25/30

$$V_{Rd,cp} = V_{Rd,cp} \cdot f_B \cdot \Psi_s \cdot \Psi_{c,N}$$

| V <sup>0</sup> Rd,cp                 | Design pry-out resistance |                           |       |       |       |  |
|--------------------------------------|---------------------------|---------------------------|-------|-------|-------|--|
| Rebar size                           | T8                        | T10                       | T12   | T13   | T16   |  |
| V <sup>0</sup> <sub>Rd,cp</sub> (kN) | 52.7                      | 62.9                      | 84.9  | 84.9  | 102.9 |  |
| V <sup>0</sup> Rd,cp                 |                           | Design pry-out resistance |       |       |       |  |
| Rebar size                           | T20                       | T25                       | T28   | T32   | T40   |  |
| V <sup>0</sup> <sub>Rd,cp</sub> (kN) | 163.2                     | 224.0                     | 326.6 | 382.5 | 588.9 |  |
| 1/ 1 E                               |                           |                           |       |       |       |  |

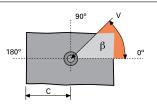
 $\gamma_{\mathsf{Mc,V}}$  = 1.5

 $\begin{aligned} V_{Rd} &= min \; (V_{Rd,c} \; ; \; V_{Rd,s} \; ; \; V_{Rd,cp} \; ) \\ \beta V &= V_{Sd} \; / \; V_{Rd} \leq 1 \end{aligned}$ 

#### $\beta$ N + $\beta$ V $\leq$ 1.2

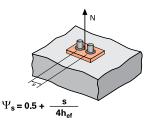
#### f<sub>B</sub> INFLUENCE OF CONCRETE

| Concrete Grade | $f_{B}$ | <b>Concrete Grade</b> | $\mathbf{f}_{B}$ |
|----------------|---------|-----------------------|------------------|
| C16/20         | 0.81    | C35/45                | 1.21             |
| C20/25         | 0.90    | C40/50                | 1.28             |
| C25/30         | 1.00    | C45/55                | 1.34             |
| C30/37         | 1.10    | C50/60                | 1.40             |


**f**<sub>T</sub> INFLUENCE OF EMBEDMENT DEPTH

.. \_\_\_\_\_\_\_

 $f_T = \frac{h_{act}}{h_{ef}}$ 


### f<sub>β,v</sub> INFLUENCE OF SHEAR LOADING DIRECTION

| $\boldsymbol{f}_{\beta,\boldsymbol{V}}$ |
|-----------------------------------------|
| 1.0                                     |
| 1.1                                     |
| 1.2                                     |
| 1.5                                     |
| 2.0                                     |
|                                         |



#### **RAMSET CC-Method**

#### Ψ<sub>s</sub> INFLUENCE OF SPACING FOR CONCRETE



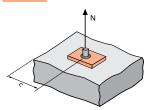
s < s<sub>cr,N</sub>

 $s_{min} = 0.5h_{ef}$ 

 $s_{cr,N} = 2h_{ef}$ 

 $\Psi_{\text{\bf s}}$  must be used for each spacing influenced the anchors group

| Spacing, s |     |      |         | Redu   | ction Fa | ctor $\Psi_s$ |
|------------|-----|------|---------|--------|----------|---------------|
|            |     | Crac | ked / N | on-cra | cked co  | ncrete        |
|            |     | T8   | T10     | T12    | T13      | T16           |
|            | 40  | 0.63 |         |        |          |               |
|            | 45  | 0.64 | 0.63    |        |          |               |
|            | 55  | 0.67 | 0.65    | 0.63   | 0.63     |               |
|            | 65  | 0.70 | 0.68    | 0.65   | 0.65     | 0.63          |
|            | 85  | 0.77 | 0.74    | 0.69   | 0.69     | 0.67          |
|            | 105 | 0.83 | 0.79    | 0.74   | 0.74     | 0.71          |
|            | 140 | 0.94 | 0.89    | 0.82   | 0.82     | 0.78          |
|            | 160 | 1.00 | 0.94    | 0.86   | 0.86     | 0.82          |
|            | 180 |      | 1.00    | 0.91   | 0.91     | 0.86          |
|            | 220 |      |         | 1.00   | 1.00     | 0.94          |


Spacing, s Reduction Factor  $\Psi_s$  Cracked / Non-cracked concrete

|     | T20  | T25  | T28  | T32  | T40  |
|-----|------|------|------|------|------|
| 85  | 0.63 |      |      |      |      |
| 105 | 0.65 | 0.63 |      |      |      |
| 140 | 0.71 | 0.67 | 0.63 |      |      |
| 160 | 0.74 | 0.69 | 0.65 | 0.63 |      |
| 210 | 0.81 | 0.75 | 0.69 | 0.68 | 0.63 |
| 250 | 0.87 | 0.80 | 0.73 | 0.71 | 0.66 |
| 300 | 0.94 | 0.86 | 0.78 | 0.75 | 0.69 |
| 350 | 1.00 | 0.92 | 0.82 | 0.79 | 0.72 |
| 420 |      | 1.00 | 0.89 | 0.85 | 0.76 |
| 540 |      |      | 1.00 | 0.95 | 0.84 |
| 600 |      |      |      | 1.00 | 0.88 |
| 700 |      |      |      |      | 0.94 |
| 800 |      |      |      |      | 1.00 |
|     |      |      |      |      |      |

#### Ψ<sub>c,N</sub> INFLUENCE OF EDGE FOR CONCRETE

250

170

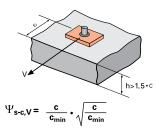


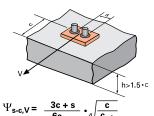
 $\Psi_{c,N} = 0.275 + 0.725 \cdot \frac{c}{h_{cf}}$ 

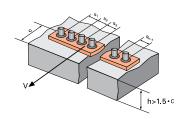
c < c<sub>cr,N</sub>

 $c_{min} = 0.5h_{ef}$ 

 $c_{cr,N} = h_{ef}$ 


 $\Psi_{\text{c,N}}$  must be used for each distance influenced the anchors group


| Euge, c | neduction Factor T <sub>C,N</sub> |      |      |      |      |  |
|---------|-----------------------------------|------|------|------|------|--|
|         | Cracked / Non-cracked concrete    |      |      |      |      |  |
|         | T8                                | T10  | T12  | T13  | T16  |  |
| 40      | 0.63                              |      |      |      |      |  |
| 45      | 0.68                              | 0.63 |      |      |      |  |
| 55      | 0.77                              | 0.71 | 0.63 | 0.63 |      |  |
| 63      | 0.84                              | 0.78 | 0.69 | 0.69 |      |  |
| 80      | 1.00                              | 0.91 | 0.80 | 0.80 |      |  |
| 85      |                                   | 0.95 | 0.83 | 0.83 | 0.63 |  |
| 90      |                                   | 1.00 | 0.86 | 0.86 | 0.65 |  |
| 110     |                                   |      | 1.00 | 1.00 | 0.74 |  |
| 125     |                                   |      |      |      | 0.80 |  |


Edge, c Reduction Factor  $\Psi_{c,N}$  Cracked / Non-cracked concrete

|     | T20  | T25  | T28  | T32  | T40  |
|-----|------|------|------|------|------|
| 85  | 0.63 |      |      |      |      |
| 105 | 0.72 | 0.63 |      |      |      |
| 135 | 0.85 | 0.74 | 0.63 |      |      |
| 150 | 0.91 | 0.79 | 0.67 | 0.63 |      |
| 170 | 1.00 | 0.86 | 0.73 | 0.68 |      |
| 200 |      | 0.96 | 0.81 | 0.75 | 0.63 |
| 210 |      | 1.00 | 0.83 | 0.78 | 0.65 |
| 270 |      |      | 1.00 | 0.92 | 0.76 |
| 300 |      |      |      | 1.00 | 0.81 |
| 400 |      |      |      |      | 1.00 |

#### Y<sub>s-c,V</sub> INFLUENCED OF SPACING AND EDGE DISTANCE FOR CONCRETE EDGE RESISTANCE IN SHEAR LOAD







| FOR SINGLE ANCHOR FASTENING Reduction Factor $\Psi_{\text{s-c,V}}$ |      |      |      |      |      |      |      |        |        |         |        |        |
|--------------------------------------------------------------------|------|------|------|------|------|------|------|--------|--------|---------|--------|--------|
|                                                                    |      |      |      |      |      |      |      | Cracke | d / No | n-cracl | ced co | ncrete |
| C <sub>min</sub>                                                   | 1.0  | 1.2  | 1.4  | 1.6  | 1.8  | 2.0  | 2.2  | 2.4    | 2.6    | 2.8     | 3.0    | 3.2    |
| Ψ <sub>s-c.V</sub>                                                 | 1.00 | 1.31 | 1.66 | 2.02 | 2.41 | 2.83 | 3.26 | 3.72   | 4.19   | 4.69    | 5.20   | 5.72   |

1.00

1.00

#### FOR 2 ANCHORS FASTENING Reduction Factor $\Psi_{\text{s-c,V}}$ Cracked / Non-cracked concrete 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 1.0 1.2 1.4 Cmin Cmin 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 1.0 3.16 0.75 2.00 2 25 0.93 1 12 1.33 1 54 1 77 2.50 2 76 3.03 3 31 1.5 2.0 0.83 1.02 1.22 1.43 1.89 2.12 2.38 2.63 2.90 3.46 0.92 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 3.61 2.5 1.11 1.32 3.0 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 3.5 4.0 1.62 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 45 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 5.0 2.33 2.59 2.87 3.15 3.44 3.74 4.04 4.35 5.5 2.71 2.99 3.28 3.57 3.88 4.19 4.50 6.0 2.83 3.11 3.41 3.71 4.02 4.33 4.65

FOR OTHER CASE OF FASTENINGS

$$\Psi_{\text{s-c,V}} = \frac{3c + s_1 + s_2 + s_3 + \dots + s_{n-1}}{3nc_{min}} \cdot \sqrt{\frac{c}{c_{min}}}$$

#### **Installation in G30 Reinforced Concrete**

#### Design Embedment Depth $L_{b,rqd}$ and Design Tensile Load Table $N_{Rd}$

| Rebar Ø (mm)                       | 10                     | 12    | 13    | 16    | 20    | 25    | 28    | 32    | 40    |
|------------------------------------|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Hole Ø (mm)                        | 13-14                  | 15-16 | 16-18 | 20-22 | 25-28 | 30-32 | 35-38 | 40-42 | 50-52 |
| Design Yield, N <sub>Rd</sub> (kN) | 31.4                   | 45.2  | 53.1  | 80.4  | 125.7 | 196.4 | 246.3 | 321.7 | 502.7 |
| L <sub>b,rqd</sub> (mm)            | 140                    | 165   | 180   | 220   | 275   | 340   | 385   | 515   | 725   |
| n = L <sub>b,rqd</sub> / Rebar Ø   | 14                     | 14    | 14    | 14    | 14    | 14    | 14    | 17    | 19    |
| L <sub>b</sub> (mm)                | $L_b$ (mm) $N_Rd$ (kN) |       |       |       |       |       |       |       |       |
| 100                                | 23.1                   |       |       |       |       |       |       |       |       |
| 110                                | 25.4                   |       |       |       |       |       |       |       |       |
| 120                                | 27.7                   | 33.2  |       |       |       |       |       |       |       |
| 125                                | 28.9                   | 34.6  |       |       |       |       |       |       |       |
| 130                                | 30.0                   | 36.0  | 39.0  |       |       |       |       |       |       |
| 140                                | 31.4                   | 38.8  | 42.9  |       |       |       |       |       |       |
| 145                                |                        | 40.2  | 43.5  |       |       |       |       |       |       |
| 160                                |                        | 44.3  | 48.0  | 59.1  |       |       |       |       |       |
| 165                                |                        | 45.2  | 49.5  | 61.0  |       |       |       |       |       |
| 180                                |                        |       | 53.1  | 66.5  |       |       |       |       |       |
| 190                                |                        |       |       | 70.2  |       |       |       |       |       |
| 200                                |                        |       |       | 73.9  | 92.4  |       |       |       |       |
| 205                                |                        |       |       | 75.7  | 94.7  |       |       |       |       |
| 220                                |                        |       |       | 80.4  | 101.6 |       |       |       |       |
| 250                                |                        |       |       |       | 115.4 | 144.3 |       |       |       |
| 255                                |                        |       |       |       | 117.8 | 147.2 |       |       |       |
| 275                                |                        |       |       |       | 125.7 | 158.7 |       |       |       |
| 280                                |                        |       |       |       |       | 161.6 | 181.0 |       |       |
| 315                                |                        |       |       |       |       | 181.8 | 203.6 |       |       |
| 320                                |                        |       |       |       |       | 184.7 | 206.9 | 200.6 |       |
| 340                                |                        |       |       |       |       | 196.4 | 219.8 | 213.2 |       |
| 360                                |                        |       |       |       |       |       | 232.7 | 225.7 |       |
| 385                                |                        |       |       |       |       |       | 246.3 | 241.4 |       |
| 395                                |                        |       |       |       |       |       |       | 247.6 |       |
| 400                                |                        |       |       |       |       |       |       | 250.8 | 278.8 |
| 440                                |                        |       |       |       |       |       |       | 275.9 | 306.7 |
| 485                                |                        |       |       |       |       |       |       | 304.1 | 338.1 |
| 515                                |                        |       |       |       |       |       |       | 321.7 | 359.0 |
| 570                                |                        |       |       |       |       |       |       |       | 397.4 |
| 595                                |                        |       |       |       |       |       |       |       | 414.8 |
| 650                                |                        |       |       |       |       |       |       |       | 453.1 |
| 725                                |                        |       |       |       |       |       |       |       | 502.7 |

Safety Factor for bond  $\gamma_B=1.8$  Safety Factor for Concrete  $\gamma_{Mc,N}=1.5$  Safety Factor for Steel  $\gamma_{Ms,N}=1.15$  Tensile development length  $L_b$  using Epcon G5: where the  $F_{Rd} \leq N_{Rd,s}$ :

$$L_b = \left(\frac{L_{b,rqd}}{f_B}\right) \cdot \left(\frac{F_{Rd}}{N_{Rd,s}}\right)$$

#### f<sub>B</sub> INFLUENCE OF CONCRETE

| Concrete Grade | $\mathbf{f}_{B}$ | Concrete Grade | $f_{B}$ |
|----------------|------------------|----------------|---------|
| C16/20         | 0.81             | C35/45         | 1.21    |
| C20/25         | 0.90             | C40/50         | 1.28    |
| C25/30         | 1.00             | C45/55         | 1.34    |
| C30/37         | 1.10             | C50/60         | 1.40    |

Note: For splitting and splice calculation, please refer to ITW Technical Engineers.

#### **INSTALLATION IN G40 REINFORCED CONCRETE**

#### Design embedment depth $L_{\text{b,rqd}}$ and Design Tensile Load Table $N_{\text{Rd}}$

| Rebar Ø (mm)                         | 10    | 12    | 13    | 16    | 20    | 25    | 28    | 32    | 40    |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Hole Ø (mm)                          | 13-14 | 15-16 | 16-18 | 20-22 | 25-28 | 30-32 | 35-38 | 40-42 | 50-52 |
| Design Yield, N <sub>Rd,s</sub> (kN) | 31.4  | 45.2  | 53.1  | 80.4  | 125.7 | 196.3 | 246.3 | 321.7 | 502.7 |
| L <sub>b,rqd</sub> (mm)              | 125   | 145   | 160   | 200   | 250   | 300   | 340   | 455   | 640   |
| n=L <sub>b,rqd</sub> /Rebar Ø        | 13    | 13    | 13    | 13    | 13    | 12    | 13    | 15    | 16    |
| L <sub>b</sub> (mm)                  |       |       |       |       | kN    |       |       |       |       |
| 90                                   | 23.1  |       |       |       |       |       |       |       |       |
| 100                                  | 25.4  |       |       |       |       |       |       |       |       |
| 105                                  | 27.7  |       |       |       |       |       |       |       |       |
| 110                                  | 28.9  | 34.6  |       |       |       |       |       |       |       |
| 115                                  | 30.0  | 36.0  | 39.0  |       |       |       |       |       |       |
| 125                                  | 31.4  | 38.8  | 42.0  |       |       |       |       |       |       |
| 130                                  |       | 40.2  | 43.5  |       |       |       |       |       |       |
| 140                                  |       | 44.3  | 48.0  | 59.1  |       |       |       |       |       |
| 145                                  |       | 45.2  | 49.5  | 61.0  |       |       |       |       |       |
| 160                                  |       |       | 53.1  | 66.5  |       |       |       |       |       |
| 170                                  |       |       |       | 70.2  |       |       |       |       |       |
| 175                                  |       |       |       | 73.9  | 92.4  |       |       |       |       |
| 180                                  |       |       |       | 75.7  | 94.7  |       |       |       |       |
| 200                                  |       |       |       | 80.4  | 101.6 |       |       |       |       |
| 220                                  |       |       |       |       | 115.4 | 144.3 |       |       |       |
| 225                                  |       |       |       |       | 117.8 | 147.2 |       |       |       |
| 250                                  |       |       |       |       | 125.7 | 158.7 |       |       |       |
| 245                                  |       |       |       |       |       | 161.6 |       |       |       |
| 235                                  |       |       |       |       |       | 173.2 |       |       |       |
| 275                                  |       |       |       |       |       | 181.8 | 203.6 |       |       |
| 280                                  |       |       |       |       |       | 184.7 | 206.9 |       |       |
| 300                                  |       |       |       |       |       | 196.3 | 219.8 | 213.2 |       |
| 320                                  |       |       |       |       |       |       | 232.7 | 225.7 |       |
| 340                                  |       |       |       |       |       |       | 246.3 | 241.4 |       |
| 350                                  |       |       |       |       |       |       |       | 247.6 |       |
| 355                                  |       |       |       |       |       |       |       | 250.8 |       |
| 390                                  |       |       |       |       |       |       |       | 275.9 |       |
| 425                                  |       |       |       |       |       |       |       | 304.1 | 338.1 |
| 455                                  |       |       |       |       |       |       |       | 321.7 | 359.0 |
| 500                                  |       |       |       |       |       |       |       |       | 397.4 |
| 525                                  |       |       |       |       |       |       |       |       | 414.8 |
| 570                                  |       |       |       |       |       |       |       |       | 453.1 |
| 640                                  |       |       |       |       |       |       |       |       | 502.7 |

Safety Factor for Bond  $\gamma_B = 1.8$ 

Safety Factor for Concrete  $\gamma_{Mc,N} = 1.5$ 

Safety Factor for Steel  $\gamma_{Ms,N} = 1.15$ 

Min Edge Distance is based on 30mm concrete cover

Tensile development length L<sub>b</sub> using Epcon G5: where the  $F_{Rd} \le N_{Rd,s}$ :

$$L_b = \frac{L_{b,rqd}}{f_B} \bullet \frac{F_{Rd}}{N_{Rd,s}}$$

| f <sub>B</sub> | INFLUENCE OF CONCRETE |                |                |  |  |  |  |  |  |  |
|----------------|-----------------------|----------------|----------------|--|--|--|--|--|--|--|
| Concrete Grade | f <sub>B</sub>        | Concrete Grade | f <sub>B</sub> |  |  |  |  |  |  |  |
| C16/20         | 0.81                  | C35/45         | 1.21           |  |  |  |  |  |  |  |
| C20/25         | 0.90                  | C40/50         | 1.28           |  |  |  |  |  |  |  |
| C25/30         | 1.00                  | C45/55         | 1.34           |  |  |  |  |  |  |  |
| C30/37         | 1.10                  | C50/60         | 1.40           |  |  |  |  |  |  |  |

#### **Installation in Reinforced Concrete**

#### **EXAMPLE 1:**

The design action effect which causes tension in the starter bar is:

N = 650kN/m run

Strip footing details: Concrete grade = 25N/mm<sup>2</sup> Structure Thickness = 600mm Concrete cover = 50mm

Load case induced in starter bar = 650kN/m run

Consider design of 460N/mm<sup>2</sup> grade reinforcement bar

To satisfy Strength Limit State Design Criteria,

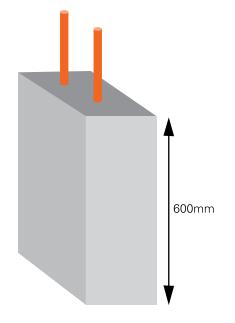
therefore,  $N \le A_s \cdot \frac{f_{yk}}{\gamma_{Ms}}$   $650,000(N) \le A_s \cdot (460 \div 1.15)$  $A_s \ge 1,624 \text{mm}^2$ 

Using 4T25 reinforcing bar @ 300mm c/c = 1,963.6mm<sup>2</sup> > 1,624mm<sup>2</sup>

Installing T25 with Epcon G5:

$$L_b = \left(\frac{L_{b,rqd}}{f_B}\right) \bullet \left(\frac{F_{Rd}}{N_{Rd,s}}\right)$$

 $L_b = (340 \text{mm} \div 0.9) \times (162.5 \text{kN} \div 196.3 \text{kN})$ 


 $L_b = 312.7 mm.....say 315 mm$ 

#### **EXAMPLE 2:**

where the existing structure is 380mm deep and concrete cover remains 50mm:

hole depth = 330mm design tensile capacity for T25 @ 300mm embedment depth = 173.1kN  $\times$  0.9 = 155.7kN 650kN = n  $\times$  155.7kN n = 650kN / 155.7kN = 4.17  $\sim$  5 (round to nearest number)

Use 5T25 reinforcing bar @ 225mm c/c = 2,454.5mm<sup>2</sup> > 1,624mm<sup>2</sup>



### **DESIGN GUIDE**

PAGE 8 OF 9

### REBAR (FE460)

#### Rebar Connection Design as per EN 1992-1-1

#### **General points**

The design of rebar connections and determination of the internal section forces to be transferred in the construction joint shall be in keeping with the EN 1992-1-1.

Verfication of immediate local force transfer to the concrete has been provided.

Verification of the transfer of the loads to the anchored to the building component must be provided.

#### **Connection joint**

In case of a connection being made between new and existing concrete where the surface layer of the existing concrete is carbonated, the layer should be removed in the area of the new reinforcing bar (with a diameter  $d_s + 60$ mm) prior to the installation of the new bar. The forgoing may be neglected if building components are new and not carbonated.

To prevent damage of the concrete during drilling, the following requirements has to be met:

- Minimum concrete cover:
   c<sub>min</sub> = 30 + 0.06l<sub>V</sub> ≥ 2d<sub>s</sub> (mm) for hammer drilled holes
   where l<sub>V</sub> = actual embedment depth
- Minimum distances between 2 rebars:
   s = 40mm ≥ 4d<sub>s</sub>
- Minimum embedment:
   I<sub>b,min</sub> = 1.5 max (0.3.L<sub>bd</sub>; 10Ø; 100mm)

Furthermore, the minimum concrete cover according to EN 1992-1-1 SS 4.4.1.2 nust be observed.

#### **Rebar Application Under ETA Rule - Intended Use**

#### **Overlap Joint**

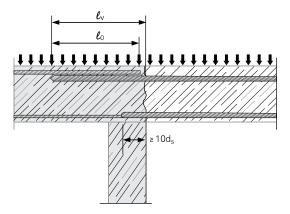
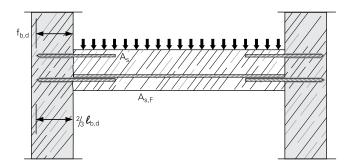




Figure 1.1: Overlap joint for rebar connections of slabs and beams.

#### **Anchoring Bar**



**Figure 1.3**: End anchoring of slabs or beams design as simply supported.

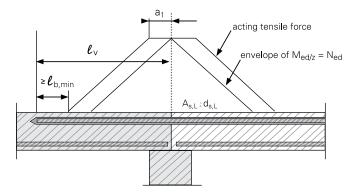



Figure 1.5: Anchoring of reinforcement to cover the line of acting tensile force.

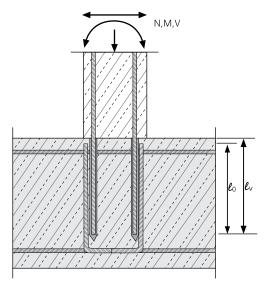
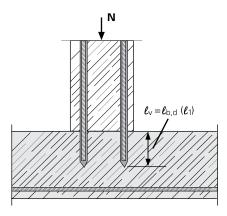
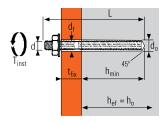




Figure 1.2: Overlap joint at a foundation of a column or wall where the rebars are stressed in tension



**Figure 1.4**: Rebar connection for components stressed primarily in compression. The rebars are stressed in compression.

### **DESIGN GUIDE**


**PAGE 1 OF 4** 

### ZINC COATED ANCHOR STUD(G5.8) / CHEMSET™

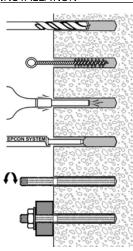




ICC-ES EVALUATION REPORT



#### MATERIAL


Stud / Chemset™: Grade 5.8

Hexagonal Nut: Grade 6 or 8

Washer: Steel

Coating: Zinc Coated 5µm

#### INSTALLATION



| Techni  | Technical Data      |                  |                |                  |        |                   |        |                   |         |           |            |  |  |  |
|---------|---------------------|------------------|----------------|------------------|--------|-------------------|--------|-------------------|---------|-----------|------------|--|--|--|
| EPCON   | Anchor              | Max              | Dri <b>ll</b>  | Thick            | Ø      | Ø                 | Total  | Tighten           | Chemset | Ramset    | Drill bit  |  |  |  |
| G5      | depth               | thick of         | depth          | of base          | Thread | Dri <b>ll</b> bit | anchor | torque            | stud    | power     | type-size  |  |  |  |
| with    |                     | fixture          |                | materia <b>l</b> |        |                   | length |                   | code    | tool code |            |  |  |  |
| Chemset |                     |                  |                |                  |        |                   |        |                   |         |           |            |  |  |  |
| Stud    | (mm)                | (mm)             | (mm)           | (mm)             | (mm)   | (mm)              | (mm)   | (Nm)              |         |           |            |  |  |  |
|         | h <sub>ef,min</sub> | t <sub>fix</sub> | h <sub>o</sub> | h <sub>min</sub> | d      | d <sub>o</sub>    | L      | T <sub>inst</sub> |         |           |            |  |  |  |
| M8      | 80                  | 15               | 80             | 100              | 8      | 10                | 110    | 10                | CS08110 | DD527     | R3 PLUS-10 |  |  |  |
| M10     | 90                  | 20               | 90             | 115              | 10     | 12                | 130    | 20                | CS10130 | DD527     | R3 PLUS-12 |  |  |  |
| M12     | 110                 | 25               | 110            | 140              | 12     | 14                | 160    | 30                | CS12160 | DD527     | R3 PLUS-14 |  |  |  |
| M16     | 125                 | 35               | 125            | 160              | 16     | 18                | 190    | 60                | CS16190 | DD544     | R3 PLUS-18 |  |  |  |
| M20     | 170                 | 65               | 170            | 215              | 20     | 25                | 260    | 120               | CS20260 | DD565     | R3 MAX-25  |  |  |  |
| M24     | 210                 | 63               | 210            | 270              | 24     | 28                | 300    | 200               | CS24300 | DD565     | R3 MAX-28  |  |  |  |
| M30     | 280                 | 70               | 280            | 350              | 30     | 35                | 380    | 400               | CS30380 | DD565     | R3 MAX-35  |  |  |  |

EPOXY G5 Two part cartridge, 100% epoxy resin - vol. 650ml

| M8   | M10                                | M12                                                     | M16                                                                                                                                                                                         | M20                                                                                                                                                                                                                                                         | M24                                                                                                                                                                                                                                                                                                                         | M30                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 540  | 540                                | 540                                                     | 520                                                                                                                                                                                         | 520                                                                                                                                                                                                                                                         | 520                                                                                                                                                                                                                                                                                                                         | 520                                                                                                                                                                                                                                                                                                                                                                                         |
| 430  | 430                                | 430                                                     | 420                                                                                                                                                                                         | 420                                                                                                                                                                                                                                                         | 420                                                                                                                                                                                                                                                                                                                         | 420                                                                                                                                                                                                                                                                                                                                                                                         |
| 36.6 | 58                                 | 84.3                                                    | 157                                                                                                                                                                                         | 245                                                                                                                                                                                                                                                         | 353                                                                                                                                                                                                                                                                                                                         | 522.8                                                                                                                                                                                                                                                                                                                                                                                       |
| 31.2 | 62.3                               | 109.2                                                   | 277.5                                                                                                                                                                                       | 540.9                                                                                                                                                                                                                                                       | 935.5                                                                                                                                                                                                                                                                                                                       | 1,686.0                                                                                                                                                                                                                                                                                                                                                                                     |
| 20.2 | 40.4                               | 70.7                                                    | 173.1                                                                                                                                                                                       | 337.5                                                                                                                                                                                                                                                       | 583.8                                                                                                                                                                                                                                                                                                                       | 1,052.1                                                                                                                                                                                                                                                                                                                                                                                     |
| 16.2 | 32.3                               | 56.6                                                    | 138.5                                                                                                                                                                                       | 270.0                                                                                                                                                                                                                                                       | 467.0                                                                                                                                                                                                                                                                                                                       | 841.7                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 540<br>430<br>36.6<br>31.2<br>20.2 | 540 540<br>430 430<br>36.6 58<br>31.2 62.3<br>20.2 40.4 | 540         540         540           430         430         430           36.6         58         84.3           31.2         62.3         109.2           20.2         40.4         70.7 | 540         540         540         520           430         430         430         420           36.6         58         84.3         157           31.2         62.3         109.2         277.5           20.2         40.4         70.7         173.1 | 540         540         540         520         520           430         430         430         420         420           36.6         58         84.3         157         245           31.2         62.3         109.2         277.5         540.9           20.2         40.4         70.7         173.1         337.5 | 540         540         540         520         520         520           430         430         430         420         420         420           36.6         58         84.3         157         245         353           31.2         62.3         109.2         277.5         540.9         935.5           20.2         40.4         70.7         173.1         337.5         583.8 |

| Setting Time before applying load |                                 |                                        |  |  |  |  |  |  |  |
|-----------------------------------|---------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| Ambient temperature (°C)          |                                 |                                        |  |  |  |  |  |  |  |
|                                   | Max time for installation (min) | Waiting time before applying load (hr) |  |  |  |  |  |  |  |
| 32°C                              | 8.5                             | 2                                      |  |  |  |  |  |  |  |
| 27°C                              | 12                              | 2                                      |  |  |  |  |  |  |  |
| 20°C                              | 15                              | 2                                      |  |  |  |  |  |  |  |
| 16°C                              | 18                              | 3                                      |  |  |  |  |  |  |  |
| 10°C                              | 21                              | 6                                      |  |  |  |  |  |  |  |

| Chemical Resistance of EPCON G5 Anchor |            |                         |            |  |  |  |  |  |  |
|----------------------------------------|------------|-------------------------|------------|--|--|--|--|--|--|
| Chemical substances                    | Resistance | Chemical substances     | Resistance |  |  |  |  |  |  |
| Xylene                                 | 1          | Toluene                 | 2          |  |  |  |  |  |  |
| Gasoline                               | 1          | 10% Nitric Acid         | 2          |  |  |  |  |  |  |
| 20% Caustic NaOH (Sodium Hydroxide)    | 1          | 8.5% Ammonium Hydroxide | 2          |  |  |  |  |  |  |
| Fresh Water                            | 1          | 5% Bleach               | 3          |  |  |  |  |  |  |
| Salt Water                             | 1          | Acetone                 | 3          |  |  |  |  |  |  |
| 10% Sulfuric Acid (H2 SO4)             | 2          | Glacial Acetic Acid     | 3          |  |  |  |  |  |  |
| 3.5% Hydrochloric Acid (HCL)           | 2          | Methanol                | 3          |  |  |  |  |  |  |
| 9% Phosphoric Acid                     | 2          | Methylene Chloride      | 3          |  |  |  |  |  |  |

- 1 = High resistance (Anchors could be submerged in these materials)
- 3 = Low resistance (Anchors should be limited to splash and spill followed by immediate cleanup)

PAGE 2 OF 4

### ZINC COATED ANCHOR STUD(G5.8) / CHEMSET™

| Number of Anchors per cartrid | dge   |       |      |      |      |      |     |
|-------------------------------|-------|-------|------|------|------|------|-----|
| Stud diameter                 | 8     | 10    | 12   | 16   | 20   | 24   | 30  |
| Drilling Ø (mm)               | 10    | 12    | 14   | 18   | 25   | 28   | 35  |
| Drilling depth (mm)           | 80    | 90    | 110  | 125  | 170  | 210  | 280 |
| No. of anchors per cartridge  |       |       |      |      |      |      |     |
| EPCON G5 (650ml)              | 206.9 | 127.7 | 76.8 | 40.9 | 15.6 | 10.1 | 4.8 |

#### Ultimate Loads ( $\overline{N}_{Ru,m}$ , $V_{Ru,m}$ ) / Characteristic Loads ( $\overline{N}_{Rk}$ , $\overline{V}_{Rk}$ ) in kN

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size            | M8   | M10  | M12  | M16  | M20   | M24   | M30   |
|------------------------|------|------|------|------|-------|-------|-------|
| h <sub>ef</sub> (mm)   | 80   | 90   | 110  | 125  | 170   | 210   | 280   |
| N <sub>Ru,m</sub> (kN) | 21.3 | 33.8 | 49.2 | 88.2 | 137.6 | 198.2 | 293.6 |
| N <sub>Rk</sub> (kN)   | 19.8 | 31.3 | 45.5 | 81.6 | 127.4 | 183.6 | 271.9 |

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size            | M8   | M10  | M12  | M16  | M20  | M24   | M30   |
|------------------------|------|------|------|------|------|-------|-------|
| V <sub>Ru,m</sub> (kN) | 12.8 | 20.3 | 29.5 | 52.9 | 82.6 | 118.9 | 176.2 |
| V <sub>Rk</sub> (kN)   | 11.9 | 18.8 | 27.3 | 49.0 | 76.4 | 110.1 | 163.1 |

#### Design Loads (N<sub>Rd</sub>, V<sub>Rd</sub>) for one anchor without edge or spacing influence in kN

$$N_{Rd} = \frac{N_{Rk}}{\gamma_{Ms,N}}$$

TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size          | M8   | M10  | M12  | M16  | M20  | M24   | M30   |
|----------------------|------|------|------|------|------|-------|-------|
| h <sub>ef</sub> (mm) | 80   | 90   | 110  | 125  | 170  | 210   | 280   |
| N <sub>Rd</sub> (kN) | 13.2 | 20.9 | 30.3 | 54.4 | 84.9 | 122.4 | 181.2 |

 $<sup>\</sup>gamma_{Ms,N}$  = 1.5 (steel failure)

$$V_{Rd} = \frac{V_{Rk}}{\gamma_{Ms,V}}$$

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size               | M8  | M10  | M12  | M16  | M20  | M24  | M30   |
|---------------------------|-----|------|------|------|------|------|-------|
| V <sub>Rd</sub> (kN)      | 9.5 | 15.0 | 21.9 | 39.2 | 61.2 | 88.1 | 130.5 |
| $\gamma_{\rm MeV} = 1.25$ |     |      |      |      |      |      |       |

#### Recommended Loads (N<sub>rec</sub>, V<sub>rec</sub>) for one anchor without edge or spacing influence in kN

$$N_{rec} = \frac{N_{Rk}}{\gamma_{Ms,N} \cdot \gamma_{F}}$$

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size           | M8  | M10  | M12  | M16  | M20  | M24  | M30   |
|-----------------------|-----|------|------|------|------|------|-------|
| h <sub>ef</sub> (mm)  | 80  | 90   | 110  | 125  | 170  | 210  | 280   |
| N <sub>rec</sub> (kN) | 9.4 | 14.9 | 21.7 | 38.9 | 60.7 | 87.4 | 129.5 |

$$\gamma_F = 1.4$$

 $\gamma_{Ms,N} = 1.5$  (steel failure)

 $V_{rec} = \frac{V_{Rk}}{\gamma_{Ms.V} \cdot \gamma_{F}}$ 

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor Size            | IVIO | IVI IU | IVIIZ | IVI I O | IVIZU | IVIZ4 | WISU |
|------------------------|------|--------|-------|---------|-------|-------|------|
| V <sub>rec</sub> (kN)  | 6.8  | 10.7   | 15.6  | 28.0    | 43.7  | 62.9  | 93.2 |
| $\gamma_F = 1.4$       |      |        |       |         |       |       |      |
| $\gamma_{Ms,V} = 1.25$ |      |        |       |         |       |       |      |

steel failure

PAGE 3 OF 4

### ZINC COATED ANCHOR STUD(G5.8) / CHEMSET™

#### **RAMSET CC-Method**

#### **TENSILE** in kN



Pull-out resistance Concrete strength C25/30

 $N_{Rd,p} = N_{Rd,p} \cdot f_B \cdot f_T$ 

| N <sup>0</sup> <sub>Rd,p</sub>      |      |      |      | Design | pu <b>ll</b> -o | ut resis | tance |
|-------------------------------------|------|------|------|--------|-----------------|----------|-------|
| Anchor size                         | M8   | M10  | M12  | M16    | M20             | M24      | M30   |
| h <sub>ef</sub>                     | 80   | 90   | 110  | 125    | 170             | 210      | 280   |
| N <sup>0</sup> <sub>Rd,p</sub> (kN) | 15.3 | 26.7 | 33.8 | 45.5   | 59.1            | 90.1     | 150.1 |

 $\gamma_{Mc,N} = 1.8$ 



Concrete cone resistance Concrete strength C25/30

 $N_{Rd,c} = N_{Rd,c} \cdot f_B \cdot f_T \cdot \Psi_s \cdot \Psi_{c,N}$ 

| N <sup>0</sup> Rd,c                 |      |      |      | Design cone resistance |      |       |       |
|-------------------------------------|------|------|------|------------------------|------|-------|-------|
| Anchor size                         | M8   | M10  | M12  | M16                    | M20  | M24   | M30   |
| h <sub>ef</sub> (mm)                | 80   | 90   | 110  | 125                    | 170  | 210   | 280   |
| N <sup>0</sup> <sub>Rd,c</sub> (kN) | 26.3 | 31.4 | 42.5 | 51.4                   | 81.6 | 112.0 | 172.5 |

 $\gamma_{\text{Mc,N}} = 1.5$ 



Steel resistance

| $N_{Rd,s}$             | Steel design tensile resistance |      |      |      |      |       |       |
|------------------------|---------------------------------|------|------|------|------|-------|-------|
| Anchor size            | M8                              | M10  | M12  | M16  | M20  | M24   | M30   |
| N <sub>Rd,s</sub> (kN) | 13.2                            | 20.9 | 30.3 | 54.4 | 84.9 | 122.4 | 181.2 |

 $\gamma_{\text{Ms,N}}$  = 1.5

 $N_{Rd} = min (N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$  $\beta N = N_{Sd} / N_{Rd} \le 1$ 

#### SHEAR in kN



Concrete edge resistance Concrete strength C25/30

 $V_{\text{Rd,c}} = V_{\text{Rd,c}}^{0} \cdot f_{\text{B}} \cdot f_{\beta,\text{V}} \cdot \Psi_{\text{s-c,V}}$ 

| V <sup>0</sup> <sub>Rd,c</sub>      | Design concrete edge resistance at a minimum edge distance (c <sub>min</sub> ) |     |     |     |      |      |      |  |
|-------------------------------------|--------------------------------------------------------------------------------|-----|-----|-----|------|------|------|--|
| Anchor size                         | M8                                                                             | M10 | M12 | M16 | M20  | M24  | M30  |  |
| h <sub>ef (mm)</sub>                | 80                                                                             | 90  | 110 | 125 | 170  | 210  | 280  |  |
| C <sub>min</sub>                    | 40                                                                             | 45  | 55  | 65  | 85   | 105  | 140  |  |
| S <sub>min</sub>                    | 40                                                                             | 45  | 55  | 65  | 85   | 105  | 140  |  |
| V <sup>0</sup> <sub>Rd,c</sub> (kN) | 2.6                                                                            | 3.4 | 5.1 | 7.3 | 12.4 | 18.7 | 32.6 |  |

 $\gamma_{Mc,V} = 1.5$ 



Steel resistance

| $V_{Rd,s}$             | Steel design shear resistan |      |      |      |      |      |       |  |
|------------------------|-----------------------------|------|------|------|------|------|-------|--|
| Anchor size            | M8                          | M10  | M12  | M16  | M20  | M24  | M30   |  |
| V <sub>Rd,s</sub> (kN) | 9.5                         | 15.0 | 21.9 | 39.2 | 61.2 | 88.1 | 130.5 |  |

 $\gamma_{Ms,V} = 1.25$ 



Concrete pry-out failure Concrete Strength C25/30

 $V_{Rd,cp} = V_{Rd,cp}^0 \cdot f_B \cdot \Psi_s \cdot \Psi_{c,N}$ 

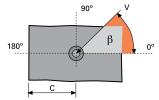
| V <sup>0</sup> <sub>Rd,cp</sub> |      |      |      | Desig | n pry-c | ut resi | stance |
|---------------------------------|------|------|------|-------|---------|---------|--------|
| Anchor size                     | M8   | M10  | M12  | M16   | M20     | M24     | M30    |
| $V_{Rd,cp}^0(kN)$               | 52.7 | 62.9 | 84.9 | 102.9 | 163.2   | 224.0   | 344.9  |
| <b>V</b> 1 E                    |      |      |      |       |         |         |        |

 $\gamma_{Mc,V} = 1.5$ 

 $V_{Rd} = min (V_{Rd,c}; V_{Rd,s}; V_{Rd,cp})$  $\beta V = V_{Sd} / V_{Rd} \le 1$ 

 $\beta$ N +  $\beta$ V  $\leq$  1.2

#### f<sub>B</sub> INFLUENCE OF CONCRETE

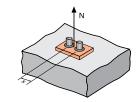

| Concrete Grade | <b>f</b> <sub>B</sub> | Concrete Grade | f <sub>B</sub> |
|----------------|-----------------------|----------------|----------------|
| C16/20         | 0.81                  | C35/45         | 1.21           |
| C20/25         | 0.90                  | C40/50         | 1.28           |
| C25/30         | 1.00                  | C45/55         | 1.34           |
| C30/37         | 1.10                  | C50/60         | 1.40           |

#### f<sub>T</sub> INFLUENCE OF EMBEDMENT DEPTH

$$f_T = \frac{h_{act}}{h_{ef}}$$

# f<sub>βV</sub> INFLUENCE OF SHEAR LOADING DIRECTION Angle β [°] f<sub>βV</sub> γ<sub>QQ</sub> γ<sub>Q</sub>

| Angle β [°] | $\mathbf{f}_{eta.\mathbf{V}}$ |
|-------------|-------------------------------|
| 0~50        | 1.0                           |
| 60          | 1.1                           |
| 70          | 1.2                           |
| 80          | 1.5                           |
| 90~180      | 2.0                           |






### ZINC COATED ANCHOR STUD(G5.8) / CHEMSET™

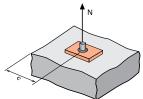
#### **RAMSET CC-Method**

#### INFLUENCE OF SPACING FOR CONCRETE



$$\Psi_s = 0.5 + \frac{s}{4h_{ef}}$$

 $s_{min} = 0.5h_{ef}$ 


 $s_{cr,N} = 2h_{ef}$ 

 $\Psi_{s}$  must be used for each spacing influenced the anchors group

| Spacing, s | 3       | Re      | duction F | actor $\Psi_{s}$ |
|------------|---------|---------|-----------|------------------|
|            | Cracked | / Non-c | racked o  | oncrete          |
|            | M8      | M10     | M12       | M16              |
| 40         | 0.63    |         |           |                  |
| 45         | 0.64    | 0.63    |           |                  |
| 55         | 0.67    | 0.65    | 0.63      |                  |
| 65         | 0.70    | 0.68    | 0.65      | 0.63             |
| 85         | 0.77    | 0.74    | 0.69      | 0.67             |
| 105        | 0.83    | 0.79    | 0.74      | 0.71             |
| 140        | 0.94    | 0.89    | 0.82      | 0.78             |
| 160        | 1.00    | 0.94    | 0.86      | 0.82             |
| 180        |         | 1.00    | 0.91      | 0.86             |
| 220        |         |         | 1.00      | 0.94             |
| 250        |         |         |           | 1.00             |

| Spacing, s | Reduction Factor $\Psi_{s}$ |                                |      |  |  |  |  |
|------------|-----------------------------|--------------------------------|------|--|--|--|--|
|            | Cracked / Non-              | Cracked / Non-cracked concrete |      |  |  |  |  |
|            | M20                         | M24                            | M30  |  |  |  |  |
| 85         | 0.63                        |                                |      |  |  |  |  |
| 105        | 0.65                        | 0.63                           |      |  |  |  |  |
| 140        | 0.71                        | 0.67                           | 0.63 |  |  |  |  |
| 160        | 0.74                        | 0.69                           | 0.64 |  |  |  |  |
| 180        | 0.76                        | 0.71                           | 0.66 |  |  |  |  |
| 220        | 0.82                        | 0.76                           | 0.70 |  |  |  |  |
| 250        | 0.87                        | 0.80                           | 0.72 |  |  |  |  |
| 300        | 0.94                        | 0.86                           | 0.77 |  |  |  |  |
| 340        | 1.00                        | 0.90                           | 0.80 |  |  |  |  |
| 370        |                             | 0.94                           | 0.83 |  |  |  |  |
| 420        |                             | 1.00                           | 0.88 |  |  |  |  |
| 560        |                             |                                | 1.00 |  |  |  |  |

#### INFLUENCE OF EDGE FOR CONCRETE

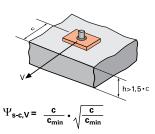


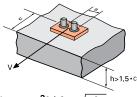
 $\Psi_{\text{c,N}}$  = 0.275 + 0.725 • c < c<sub>cr,N</sub>

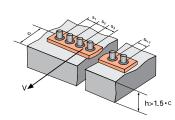
 $c_{min} = 0.5h_{ef}$ 

 $c_{cr,N} = h_{ef}$ 

 $\Psi_{\mathbf{c},\mathbf{N}}$  must be used for each distance influenced the anchors group


#### Edge, c Reduction Factor $\Psi_{c,N}$ Cracked / Non-cracked concrete


|     | M8   | M10  | M12  | M16  |
|-----|------|------|------|------|
| 40  | 0.63 |      |      |      |
| 45  | 0.68 | 0.63 |      |      |
| 55  | 0.77 | 0.71 | 0.63 |      |
| 65  | 0.86 | 0.79 | 0.70 | 0.65 |
| 80  | 1.00 | 0.91 | 0.80 | 0.73 |
| 90  |      | 1.00 | 0.86 | 0.79 |
| 110 |      |      | 1.00 | 0.91 |
| 125 |      |      |      | 1.00 |


| Edge, c | Reduction Factor $\Psi_{c,N}$  |
|---------|--------------------------------|
|         | Cracked / Non-cracked concrete |

|     | M20  | M24  | M30  |
|-----|------|------|------|
| 85  | 0.63 |      |      |
| 105 | 0.72 | 0.63 |      |
| 120 | 0.78 | 0.68 |      |
| 140 | 0.87 | 0.75 | 0.63 |
| 170 | 1.00 | 0.86 | 0.71 |
| 210 |      | 1.00 | 0.81 |
| 250 |      |      | 0.92 |
| 280 |      |      | 1.00 |

#### INFLUENCED OF SPACING AND EDGE DISTANCE FOR CONCRETE EDGE RESISTANCE IN SHEAR LOAD







#### FOR SINGLE ANCHOR FASTENING

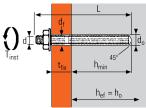
Reduction Factor  $\Psi_{s-c,V}$ Cracked / Non-cracked concrete 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.2  $\Psi_{\text{s-c,V}}$ 2.02 2.41 2.83 3.26 3.72 4.19 4.69 1 00 1.31 1 66 5 20 5 72

#### FOR 2 ANCHORS FASTENING

Reduction Factor  $\Psi_{\text{s-c,V}}$ Cracked / Non-cracked concrete 1.6 2.0 2.2 2.6 2.8 3.2 1.0 1.2 1.4 1.8 2.4 C<sub>min</sub> 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 2.89 3.16 1.5 0.75 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 3.03 3.31 1.65 2.38 2.63 2.90 3.18 1.02 1.43 1.89 2.12 20 0.83 1.22 2.5 0.92 1.11 1.54 1.77 2.00 2.25 2.50 2.77 3.04 3.32 1.00 1.20 1.42 1.64 1.88 2.12 2.37 2.63 2.90 3.18 3.46 3.76 3.0 3.5 1.30 1.52 1.75 1.99 2.24 2.50 2.76 3.04 3.32 3.61 3.91 4.0 1.86 2.10 2.36 2.62 2.89 3.17 3.46 3.75 4.05 4.5 2.21 2.47 2.74 3.02 3.31 3.60 3.90 4.20 5.0 2.59 2.87 3.15 3.44 3.74 4.04 4.35 2 71 2.99 3.28 3 57 3.88 4 19 5.5 4 50 2.83 3.41 3.71 6.0

#### FOR OTHER CASE OF FASTENINGS

$$\Psi_{\text{s-c,V}} = \frac{3c + s_1 + s_2 + s_3 + \dots + s_{n-1}}{3nc_{min}} \cdot \sqrt{\frac{c}{c_{min}}}$$


### **DESIGN GUIDE**

**PAGE 1 OF 4** 

### ZINC COATED ANCHOR STUD(G8.8) / CHEMSET™







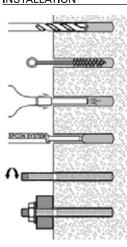
#### MATERIAL

Stud / Chemset™: Grade 8.8

Hexagonal Nut: Grade 8 or 10

Washer: Steel

Coating:


Zinc Coated 5µm

### **Technical Data**

|       | Anchor              | Max              | Drill          | Thick            | Ø      | Ø                 | Total  | Tighten           | Ramset    | Dri <b>ll</b> bit |
|-------|---------------------|------------------|----------------|------------------|--------|-------------------|--------|-------------------|-----------|-------------------|
| EPCON | depth               | thick of         | depth          | of base          | Thread | Dri <b>ll</b> bit | anchor | torque            | power     | type-size         |
| G5    |                     | fixture          |                | materia <b>l</b> |        |                   | length |                   | tool code |                   |
|       |                     |                  |                |                  |        |                   |        |                   |           |                   |
|       | (mm)                | (mm)             | (mm)           | (mm)             | (mm)   | (mm)              | (mm)   | (Nm)              |           |                   |
|       | h <sub>ef,min</sub> | t <sub>fix</sub> | h <sub>o</sub> | h <sub>min</sub> | d      | do                | L      | T <sub>inst</sub> |           |                   |
| M8    | 80                  | 15               | 80             | 100              | 8      | 10                | 110    | 10                | DD527     | R3 PLUS-10        |
| M10   | 90                  | 20               | 90             | 115              | 10     | 12                | 130    | 20                | DD527     | R3 PLUS-12        |
| M12   | 110                 | 25               | 110            | 140              | 12     | 14                | 160    | 30                | DD527     | R3 PLUS-14        |
| M16   | 125                 | 35               | 125            | 160              | 16     | 18                | 190    | 60                | DD544     | R3 PLUS-18        |
| M20   | 170                 | 65               | 170            | 215              | 20     | 25                | 260    | 120               | DD565     | R3 MAX-25         |
| M24   | 210                 | 63               | 210            | 270              | 24     | 28                | 300    | 200               | DD565     | R3 MAX-28         |
| M27   | 240                 | 60               | 240            | 300              | 27     | 30                | 340    | 300               | DD565     | R3 MAX-30         |
| M30   | 280                 | 70               | 280            | 350              | 30     | 35                | 380    | 400               | DD565     | R3 MAX-35         |
| M33   | 300                 | 80               | 300            | 375              | 33     | 38                | 420    | 1200              | DD565     | R3 MAX-38         |
| M36   | 330                 | 90               | 330            | 413              | 36     | 40                | 460    | 1500              | DD565     | R3 MAX-40         |
| M39   | 360                 | 100              | 360            | 450              | 39     | 45                | 510    | 1800              | DD565     | R3 MAX-45         |

| M8   | M10                                | M12                                                                                                                    | M16                                                                                                                                                                                                                                                                                                                                                                                                                 | M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 800  | 800                                | 800                                                                                                                    | 800                                                                                                                                                                                                                                                                                                                                                                                                                 | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 640  | 640                                | 640                                                                                                                    | 640                                                                                                                                                                                                                                                                                                                                                                                                                 | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 36.6 | 58                                 | 84.3                                                                                                                   | 157                                                                                                                                                                                                                                                                                                                                                                                                                 | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31.2 | 62.3                               | 109.2                                                                                                                  | 277.5                                                                                                                                                                                                                                                                                                                                                                                                               | 540.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 935.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30.0 | 59.8                               | 104.8                                                                                                                  | 266.4                                                                                                                                                                                                                                                                                                                                                                                                               | 519.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 898.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24.0 | 47.8                               | 83.9                                                                                                                   | 213.1                                                                                                                                                                                                                                                                                                                                                                                                               | 415.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 718.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | M27                                | M30                                                                                                                    | M33                                                                                                                                                                                                                                                                                                                                                                                                                 | M36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 800                                | 800                                                                                                                    | 800                                                                                                                                                                                                                                                                                                                                                                                                                 | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 640                                | 640                                                                                                                    | 640                                                                                                                                                                                                                                                                                                                                                                                                                 | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 427                                | 522.8                                                                                                                  | 647                                                                                                                                                                                                                                                                                                                                                                                                                 | 759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 1,245.0                            | 1,668.0                                                                                                                | 2,322.0                                                                                                                                                                                                                                                                                                                                                                                                             | 2,951.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,860.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 1,195.2                            | 1,601.3                                                                                                                | 2,229.1                                                                                                                                                                                                                                                                                                                                                                                                             | 2,833.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,705.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 956.2                              | 1,281.0                                                                                                                | 1,783.3                                                                                                                                                                                                                                                                                                                                                                                                             | 2,266.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,964.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 800<br>640<br>36.6<br>31.2<br>30.0 | 800 800<br>640 640<br>36.6 58<br>31.2 62.3<br>30.0 59.8<br>24.0 47.8<br>M27<br>800<br>640<br>427<br>1,245.0<br>1,195.2 | 800         800         800           640         640         640           36.6         58         84.3           31.2         62.3         109.2           30.0         59.8         104.8           24.0         47.8         83.9           M27         M30           800         800           640         640           427         522.8           1,245.0         1,668.0           1,195.2         1,601.3 | 800         800         800         800           640         640         640         640           36.6         58         84.3         157           31.2         62.3         109.2         277.5           30.0         59.8         104.8         266.4           24.0         47.8         83.9         213.1           M27         M30         M33           800         800         800           640         640         640           427         522.8         647           1,245.0         1,668.0         2,322.0           1,195.2         1,601.3         2,229.1 | 800         800         800         800         800           640         640         640         640         640           36.6         58         84.3         157         245           31.2         62.3         109.2         277.5         540.9           30.0         59.8         104.8         266.4         519.3           24.0         47.8         83.9         213.1         415.4           M27         M30         M33         M36           800         800         800         800           640         640         640         640           427         522.8         647         759           1,245.0         1,668.0         2,322.0         2,951.0           1,195.2         1,601.3         2,229.1         2,833.0 |

#### **INSTALLATION**



#### Setting Time before applying load

| Ambient temperature (°C) |                                 |                                        |
|--------------------------|---------------------------------|----------------------------------------|
|                          | Max time for installation (min) | Waiting time before applying load (hr) |
| 32°C                     | 8.5                             | 2                                      |
| 27°C                     | 12                              | 2                                      |
| 20°C                     | 15                              | 2                                      |
| 16°C                     | 18                              | 3                                      |
| 10°C                     | 21                              | 6                                      |
|                          |                                 |                                        |

| Chemical Resistance of EPCON G5 Anchor |            |                         |            |  |  |  |  |  |
|----------------------------------------|------------|-------------------------|------------|--|--|--|--|--|
| Chemical substances                    | Resistance | Chemical substances     | Resistance |  |  |  |  |  |
| Xylene                                 | 1          | Toluene                 | 2          |  |  |  |  |  |
| Gasoline                               | 1          | 10% Nitric Acid         | 2          |  |  |  |  |  |
| 20% Caustic NaOH (Sodium Hydroxide)    | 1          | 8.5% Ammonium Hydroxide | 2          |  |  |  |  |  |
| Fresh Water                            | 1          | 5% Bleach               | 3          |  |  |  |  |  |
| Salt Water                             | 1          | Acetone                 | 3          |  |  |  |  |  |
| 10% Sulfuric Acid (H2 SO4)             | 2          | Glacial Acetic Acid     | 3          |  |  |  |  |  |
| 3.5% Hydrochloric Acid (HCL)           | 2          | Methanol                | 3          |  |  |  |  |  |
| 9% Phosphoric Acid                     | 2          | Methylene Chloride      | 3          |  |  |  |  |  |

- 1 = High resistance (Anchors could be submerged in these materials)
- 2 = Medium resistance (Anchors could be temporary submerged due to splash or spill)
- 3 = Low resistance (Anchors should be limited to splash and spill followed by immediate cleanup)

### **DESIGN GUIDE**

PAGE 2 OF 4

### ZINC COATED ANCHOR STUD(G8.8) / CHEMSET™

| Number of Anchors per cartric | lge   |       |      |      |      |      |     |     |     |     |     |
|-------------------------------|-------|-------|------|------|------|------|-----|-----|-----|-----|-----|
| Stud diameter                 | 8     | 10    | 12   | 16   | 20   | 24   | 27  | 30  | 33  | 36  | 39  |
| Drilling Ø (mm)               | 10    | 12    | 14   | 18   | 25   | 28   | 30  | 35  | 38  | 35  | 45  |
| Drilling depth (mm)           | 80    | 90    | 110  | 125  | 170  | 210  | 240 | 280 | 300 | 330 | 360 |
| No. of anchors per cartridge  |       |       |      |      |      |      |     |     |     |     |     |
| EPCON G5 (650ml)              | 206.9 | 127.7 | 76.8 | 40.9 | 15.6 | 10.1 | 7.7 | 4.8 | 3.8 | 3.1 | 2.3 |

#### Ultimate Loads (N<sub>Ru,m</sub>, V<sub>Ru,m</sub>) / Characteristic Loads (N<sub>Rk</sub>, V<sub>Rk</sub>) in kN

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size            | M8   | M10  | M12  | M16   | M20   | M24   |
|------------------------|------|------|------|-------|-------|-------|
| h <sub>ef</sub> (mm)   | 80   | 90   | 110  | 125   | 170   | 210   |
| N <sub>Ru,m</sub> (kN) | 31.6 | 50.1 | 72.8 | 109.1 | 141.8 | 216.2 |
| N <sub>Rk</sub> (kN)   | 29.3 | 46.4 | 67.4 | 81.8  | 106.3 | 162.1 |

| Anchor size            | M27   | M30   | M33   | M36   | M39   |
|------------------------|-------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm)   | 240   | 280   | 300   | 330   | 360   |
| N <sub>Ru,m</sub> (kN) | 264.7 | 360.3 | 419.1 | 485.3 | 595.6 |
| N <sub>Rk</sub> (kN)   | 198.5 | 270.2 | 314.3 | 364.0 | 446.7 |

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| · ····                 | M8   | 141 10 | IVIIZ | 141 10 | M20   | IVIZ4 |
|------------------------|------|--------|-------|--------|-------|-------|
| V <sub>Ru,m</sub> (kN) | 19.0 | 30.1   | 43.7  | 81.4   | 127.0 | 183.0 |
| V <sub>Rk</sub> (kN)   | 17.6 | 27.8   | 40.5  | 75.4   | 117.6 | 169.4 |

| Anchor size            | M27   | M30   | M33   | M36   | M39   |
|------------------------|-------|-------|-------|-------|-------|
| V <sub>Ru,m</sub> (kN) | 221.4 | 271.0 | 335.4 | 393.5 | 473.3 |
| V <sub>Rk</sub> (kN)   | 205.0 | 250.9 | 310.6 | 364.3 | 438.2 |

#### Design Loads (N<sub>Rd</sub>, V<sub>Rd</sub>) for one anchor without edge or spacing influence in kN

$$N_{Rd} = \frac{N_{Rk}}{\gamma_{Mc,N}}$$
 or  $\frac{N_{Rk}}{\gamma_{Ms,N}}$ 

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size          | M8   | M10  | M12  | M16  | M20  | M24  |
|----------------------|------|------|------|------|------|------|
| h <sub>ef</sub> (mm) | 80   | 90   | 110  | 125  | 170  | 210  |
| N <sub>Rd</sub> (kN) | 19.5 | 30.9 | 45.0 | 45.5 | 59.1 | 90.1 |
|                      |      |      |      |      |      |      |

| Anchor size          | M27   | M30   | M33   | M36   | M39   |
|----------------------|-------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm) | 240   | 280   | 300   | 330   | 360   |
| N <sub>Rd</sub> (kN) | 110.3 | 150.1 | 174.6 | 202.2 | 248.2 |
|                      |       |       |       |       |       |

$$\gamma_{Mc,N} = 1.8$$

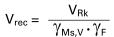
$$V_{Rd} = \frac{V_{Rk}}{\gamma_{Ms,V}}$$

#### SHEAR @ Concrete strength 30 N/mm²

| Anchor size          | M8   | M10   | M12   | M16   | M20   | M24   |
|----------------------|------|-------|-------|-------|-------|-------|
| V <sub>Rd</sub> (kN) | 14.1 | 22.3  | 32.4  | 60.3  | 94.1  | 135.6 |
| Anchor size          |      | M27   | M30   | M33   | M36   | M39   |
| V <sub>Rd</sub> (kN) |      | 164.0 | 200.8 | 248.4 | 291.5 | 350.6 |
| V - 1.25             |      |       |       |       |       |       |

$$\gamma_{Ms,V} = 1.25$$

#### Recommended Loads (N<sub>rec</sub>, V<sub>rec</sub>) for one anchor without edge or spacing influence in kN


$$N_{\text{rec}} = \frac{N_{\text{Rk}}}{\gamma_{\text{Mc,N}} \cdot \gamma_{\text{F}}} \quad \text{ or } \quad \frac{N_{\text{Rk}}}{\gamma_{\text{Ms,N}} \cdot \gamma_{\text{F}}}$$

| Anchor size           | M8   | M10  | M12   | M16   | M20   | M24   |
|-----------------------|------|------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm)  | 80   | 90   | 110   | 125   | 170   | 210   |
| N <sub>rec</sub> (kN) | 13.9 | 22.1 | 32.1  | 32.5  | 42.2  | 64.3  |
| Anchor size           |      | M27  | M30   | M33   | M36   | M39   |
| h <sub>ef</sub> (mm)  |      | 240  | 280   | 300   | 330   | 360   |
| N (kN)                |      | 78.8 | 107.2 | 124 7 | 144 4 | 177.3 |

$$\gamma_F = 1.4$$

$$\gamma_{Mc,N} = 1.8$$

$$\gamma_{Ms,N} = 1.5$$
 (steel failure)



#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size           | M8   | M10   | M12   | M16   | M20   | M24   |
|-----------------------|------|-------|-------|-------|-------|-------|
| V <sub>rec</sub> (kN) | 10.0 | 15.9  | 23.1  | 43.1  | 67.2  | 96.8  |
| Anchor size           |      | M27   | M30   | M33   | M36   | M39   |
| V <sub>rec</sub> (kN) |      | 117.1 | 143.4 | 177.5 | 208.2 | 250.4 |

$$\gamma_{\rm F} = 1.4$$

$$\gamma_{Ms,V} = 1.25$$



 $<sup>\</sup>gamma_{Ms,N}$  = 1.5 (steel failure)

PAGE 3 OF 4

### ZINC COATED ANCHOR STUD(G8.8) / CHEMSET™

#### **RAMSET CC-Method**

#### **TENSILE** in kN



Pull-out resistance Concrete strength C25/30

 $N_{Rd,p} = N_{Rd,p} \cdot f_B \cdot f_T$ 

| N <sup>0</sup> <sub>Rd,p</sub>      | Design pull-out resistance |      |      |      |      |      |
|-------------------------------------|----------------------------|------|------|------|------|------|
| Anchor size                         | M8                         | M10  | M12  | M16  | M20  | M24  |
| h <sub>ef</sub>                     | 80                         | 90   | 110  | 125  | 170  | 210  |
| N <sup>0</sup> <sub>Rd,p</sub> (kN) | 15.3                       | 26.7 | 33.8 | 45.5 | 59.1 | 90.1 |

| N <sup>0</sup> <sub>Rd,p</sub>      | Design pull-out resistance |       |       |       |       |  |  |
|-------------------------------------|----------------------------|-------|-------|-------|-------|--|--|
| Anchor size                         | M27                        | M30   | M33   | M36   | M39   |  |  |
| h <sub>ef</sub>                     | 240                        | 280   | 300   | 330   | 360   |  |  |
| N <sup>0</sup> <sub>Rd,p</sub> (kN) | 110.3                      | 150.1 | 174.6 | 202.2 | 248.2 |  |  |

 $\gamma_{Mc,N} = 1.8$ 



Concrete cone resistance Concrete strength C25/30

 $\textbf{N}_{\text{Rd,c}} = \textbf{N}^{0}_{\text{Rd,c}} \cdot \textbf{f}_{\text{B}} \cdot \textbf{f}_{\text{T}} \cdot \boldsymbol{\Psi}_{\text{s}} \cdot \boldsymbol{\Psi}_{\text{c,N}}$ 

| N <sup>0</sup> Rd,c                 | Design cone resistance |      |      |      |      |       |
|-------------------------------------|------------------------|------|------|------|------|-------|
| Anchor size                         | M8                     | M10  | M12  | M16  | M20  | M24   |
| h <sub>ef</sub> (mm)                | 80                     | 90   | 110  | 125  | 170  | 210   |
| N <sup>0</sup> <sub>Rd,c</sub> (kN) | 26.3                   | 31.4 | 42.5 | 51.4 | 81.6 | 112.0 |

| N <sup>0</sup> <sub>Rd,c</sub>      | Design cone resistance |       |       |       |       |  |
|-------------------------------------|------------------------|-------|-------|-------|-------|--|
| Anchor size                         | M27                    | M30   | M33   | M36   | M39   |  |
| h <sub>ef</sub> (mm)                | 240                    | 280   | 300   | 330   | 360   |  |
| N <sup>0</sup> <sub>Pd o</sub> (kN) | 136.9                  | 172 5 | 191 3 | 220.6 | 251 4 |  |

 $\gamma_{\text{Mc,N}} = 1.5$ 



Steel resistance



| $N_{Rd,s}$             | Steel design tensile resistance |      |      |      |       |       |  |  |
|------------------------|---------------------------------|------|------|------|-------|-------|--|--|
| Anchor size            | M8                              | M10  | M12  | M16  | M20   | M24   |  |  |
| N <sub>Rd,s</sub> (kN) | 19.5                            | 30.9 | 45.0 | 83.7 | 130.7 | 188.3 |  |  |

| N <sub>Rd,s</sub>      | Steel design tensile resistance |       |       |       |       |  |  |  |
|------------------------|---------------------------------|-------|-------|-------|-------|--|--|--|
| Anchor size            | M27                             | M30   | M33   | M36   | M39   |  |  |  |
| N <sub>Rd,s</sub> (kN) | 227.7                           | 278.8 | 345.1 | 404.8 | 486.9 |  |  |  |

 $\gamma_{Ms,N} = 1.5$ 

 $N_{Rd} = min (N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$  $\beta N = N_{Sd} / N_{Rd} \le 1$ 

#### SHEAR in kN



Concrete edge resistance Concrete strength C25/30

 $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_{\beta,V} \cdot \Psi_{s-c,V}$ 

| V <sup>0</sup> Rd,c                 | Design concrete edge resistance at a minimum edge distance (c <sub>min</sub> ) |     |     |     |     |     |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------|-----|-----|-----|-----|-----|--|--|--|
| Anchor size                         | M8                                                                             | M10 | M12 | M16 | M20 | M24 |  |  |  |
| h <sub>ef (mm)</sub>                | 80                                                                             | 90  | 110 | 125 | 170 | 210 |  |  |  |
| C <sub>min</sub>                    | 40                                                                             | 45  | 55  | 65  | 85  | 105 |  |  |  |
| S <sub>min</sub>                    | 40                                                                             | 45  | 55  | 65  | 85  | 105 |  |  |  |
| V <sup>0</sup> <sub>Rd,c</sub> (kN) | 2.6 3.4 5.1 7.3 12.4 18.7                                                      |     |     |     |     |     |  |  |  |
|                                     |                                                                                |     |     |     |     |     |  |  |  |

| V <sup>0</sup> <sub>Rd,c</sub>      | Design concrete edge resistance at a minimum edge distance (c <sub>min</sub> ) |                          |     |     |     |  |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------|--------------------------|-----|-----|-----|--|--|--|--|--|
| Anchor size                         | M27                                                                            | M30                      | M33 | M36 | M39 |  |  |  |  |  |
| h <sub>ef (mm)</sub>                | 240                                                                            | 280                      | 300 | 330 | 360 |  |  |  |  |  |
| C <sub>min</sub>                    | 120                                                                            | 140                      | 150 | 165 | 180 |  |  |  |  |  |
| S <sub>min</sub>                    | 120                                                                            | 140                      | 150 | 165 | 180 |  |  |  |  |  |
| V <sup>0</sup> <sub>Rd,c</sub> (kN) | 24.3                                                                           | 24.3 32.6 37.8 45.6 54.1 |     |     |     |  |  |  |  |  |

 $\gamma_{Mc,V} = 1.5$ 



Steel resistance

| $V_{Rd,s}$             | Steel design shear resistance |      |         |        |          |        |  |  |
|------------------------|-------------------------------|------|---------|--------|----------|--------|--|--|
| Anchor size            | M8                            | M10  | M12     | M16    | M20      | M24    |  |  |
| V <sub>Rd,s</sub> (kN) | 14.1                          | 22.3 | 32.4    | 60.3   | 94.1     | 135.6  |  |  |
| V                      |                               | Ste  | el desi | an she | ar resis | stance |  |  |

| V <sub>Rd,s</sub>      | Steel design shear resistance |       |       |       |       |  |  |
|------------------------|-------------------------------|-------|-------|-------|-------|--|--|
| Anchor size            | M27                           | M30   | M33   | M36   | M39   |  |  |
| V <sub>Rd,s</sub> (kN) | 164.0                         | 200.8 | 248.4 | 291.5 | 350.6 |  |  |
| ^/                     |                               |       |       |       |       |  |  |

 $\gamma_{Ms,V} = 1.25$ 



Concrete pry-out failure Concrete Strength C25/30

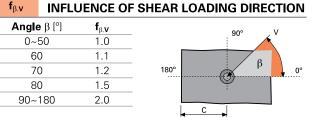
 $V_{Rd,cp} = V_{Rd,cp}^0 \cdot f_B \cdot \Psi_s \cdot \Psi_{c,N}$ 

| Design pry-out resistance |      |      |            |                |                    |  |  |
|---------------------------|------|------|------------|----------------|--------------------|--|--|
| M8                        | M10  | M12  | M16        | M20            | M24                |  |  |
| 52.7                      | 62.9 | 84.9 | 102.9      | 163.2          | 224.0              |  |  |
|                           |      |      | M8 M10 M12 | M8 M10 M12 M16 | M8 M10 M12 M16 M20 |  |  |

| V⁰ <sub>Rd,cp</sub>                  | Design pry-out resistance |       |       |       |       |  |  |  |
|--------------------------------------|---------------------------|-------|-------|-------|-------|--|--|--|
| Anchor size                          | M27                       | M30   | M33   | M36   | M39   |  |  |  |
| V <sup>0</sup> <sub>Rd,cp</sub> (kN) | 273.7                     | 344.9 | 382.5 | 441.3 | 502.8 |  |  |  |
| \\ 1 E                               |                           |       |       |       |       |  |  |  |

 $\gamma_{\text{Mc,V}} = 1.5$ 

 $\begin{aligned} \textbf{V}_{Rd} &= min \; (\textbf{V}_{Rd,c} \; ; \; \textbf{V}_{Rd,s} \; ; \; \textbf{V}_{Rd,cp}) \\ \beta \textbf{V} &= \textbf{V}_{Sd} \; / \; \textbf{V}_{Rd} \leq \textbf{1} \end{aligned}$ 


 $\beta$ N +  $\beta$ V  $\leq$  1.2

#### f<sub>B</sub> INFLUENCE OF CONCRETE

| Concrete Grade | $f_{B}$ | Concrete Grade | $f_B$ |
|----------------|---------|----------------|-------|
| C16/20         | 0.81    | C35/45         | 1.21  |
| C20/25         | 0.90    | C40/50         | 1.28  |
| C25/30         | 1.00    | C45/55         | 1.34  |
| C30/37         | 1.10    | C50/60         | 1.40  |

f<sub>T</sub> INFLUENCE OF EMBEDMENT DEPTH

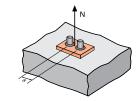
 $f_T = \frac{h_{act}}{h_{af}}$ 





### ZINC COATED ANCHOR STUD(G8.8) / CHEMSET™

Spacing, s


150

170

210

#### **RAMSET CC-Method**

#### INFLUENCE OF SPACING FOR CONCRETE

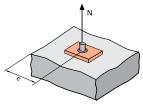


$$\Psi_{s} = 0.5 + \frac{s}{4h}$$

 $s < s_{cr,N}$ 

 $s_{min} = 0.5h_{ef}$ 

 $s_{cr,N} = 2h_{ef}$ 


 $\Psi_{\textbf{s}}$  must be used for each spacing influenced the anchors group

|     | 0.    |        |      |      |      |      |
|-----|-------|--------|------|------|------|------|
|     | ed co | ncrete |      |      |      |      |
|     | M8    | M10    | M12  | M16  | M20  | M24  |
| 40  | 0.63  |        |      |      |      |      |
| 45  | 0.64  | 0.63   |      |      |      |      |
| 55  | 0.67  | 0.65   | 0.63 |      |      |      |
| 65  | 0.70  | 0.68   | 0.65 | 0.63 |      |      |
| 85  | 0.77  | 0.74   | 0.69 | 0.67 | 0.63 |      |
| 105 | 0.83  | 0.79   | 0.74 | 0.71 | 0.65 | 0.63 |
| 140 | 0.94  | 0.89   | 0.82 | 0.78 | 0.71 | 0.67 |
| 160 | 1.00  | 0.94   | 0.86 | 0.82 | 0.74 | 0.69 |
| 180 |       | 1.00   | 0.91 | 0.86 | 0.76 | 0.71 |
| 220 |       |        | 1.00 | 0.94 | 0.82 | 0.76 |
| 250 |       |        |      | 1.00 | 0.87 | 0.80 |
| 340 |       |        |      |      | 1.00 | 0.90 |
| 420 |       |        |      |      |      | 1.00 |
|     |       |        |      |      |      |      |

Reduction Factor  $\Psi_s$ 

| Spacing, s | Reduction Factor $\Psi_{\epsilon}$ |         |        |        |         |  |  |  |
|------------|------------------------------------|---------|--------|--------|---------|--|--|--|
|            | Cracked                            | l / Nor | n-crac | ked co | oncrete |  |  |  |
|            | M27                                | M30     | M33    | M36    | M39     |  |  |  |
| 120        | 0.63                               |         |        |        |         |  |  |  |
| 140        | 0.65                               | 0.63    |        |        |         |  |  |  |
| 155        | 0.66                               | 0.64    | 0.63   |        |         |  |  |  |
| 165        | 0.67                               | 0.65    | 0.64   | 0.63   |         |  |  |  |
| 180        | 0.69                               | 0.66    | 0.65   | 0.64   | 0.63    |  |  |  |
| 300        | 0.81                               | 0.77    | 0.75   | 0.73   | 0.71    |  |  |  |
| 400        | 0.92                               | 0.86    | 0.83   | 0.80   | 0.78    |  |  |  |
| 480        | 1.00                               | 0.93    | 0.90   | 0.86   | 0.83    |  |  |  |
| 560        |                                    | 1.00    | 0.97   | 0.92   | 0.89    |  |  |  |
| 600        |                                    |         | 1.00   | 0.95   | 0.92    |  |  |  |
| 660        |                                    |         |        | 1.00   | 0.96    |  |  |  |
| 720        |                                    |         |        |        | 1.00    |  |  |  |

#### INFLUENCE OF EDGE FOR CONCRETE

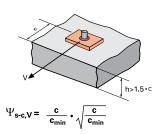


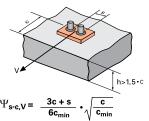
 $\Psi_{c,N}$  = 0.275 + 0.725 •

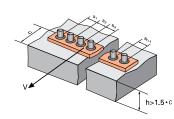
 $c < c_{cr,N}$ 

 $c_{min} = 0.5h_{ef}$ 

 $c_{cr,N} = h_{ef}$ 


 $\Psi_{\textbf{c},\textbf{N}}$  must be used for each distance influenced the anchors group


| Edge, c |      | Reduction Factor $\Psi_{c,N}$ |        |       |        |        |  |  |  |
|---------|------|-------------------------------|--------|-------|--------|--------|--|--|--|
|         | Cra  | acked                         | / Non- | crack | ed cor | ncrete |  |  |  |
|         | M8   | M10                           | M12    | M16   | M20    | M24    |  |  |  |
| 40      | 0.63 |                               |        |       |        |        |  |  |  |
| 45      | 0.68 | 0.63                          |        |       |        |        |  |  |  |
| 55      | 0.77 | 0.71                          | 0.63   |       |        |        |  |  |  |
| 63      | 0.84 | 0.78                          | 0.69   | 0.64  |        |        |  |  |  |
| 80      | 1.00 | 0.91                          | 0.80   | 0.73  |        |        |  |  |  |
| 85      |      | 0.95                          | 0.83   | 0.76  | 0.63   |        |  |  |  |
| 90      |      | 1.00                          | 0.86   | 0.79  | 0.65   |        |  |  |  |
| 105     |      |                               | 0.96   | 0.88  | 0.72   | 0.63   |  |  |  |
| 110     |      |                               | 1.00   | 0.91  | 0.74   | 0.65   |  |  |  |
| 125     |      |                               |        | 1.00  | 0.80   | 0.70   |  |  |  |


| 5 - , - |         |         |        |        | · · · C, N |
|---------|---------|---------|--------|--------|------------|
|         | Cracked | l / Nor | n-crac | ked co | oncrete    |
|         | M27     | M30     | M33    | M36    | M39        |
| 120     | 0.63    |         |        |        |            |
| 140     | 0.69    | 0.63    |        |        |            |
| 150     | 0.72    | 0.66    | 0.63   |        |            |
| 165     | 0.77    | 0.70    | 0.67   | 0.63   |            |
| 180     | 0.81    | 0.74    | 0.71   | 0.67   | 0.63       |
| 240     | 1.00    | 0.89    | 0.85   | 0.80   | 0.75       |
| 250     |         | 0.92    | 0.87   | 0.82   | 0.77       |
| 280     |         | 1.00    | 0.95   | 0.89   | 0.83       |
| 300     |         |         | 1.00   | 0.93   | 0.87       |
| 330     |         |         |        | 1.00   | 0.93       |
| 360     |         |         |        |        | 1.00       |

Reduction Factor  $\Psi_{c,N}$ 

#### INFLUENCED OF SPACING AND EDGE DISTANCE FOR CONCRETE EDGE RESISTANCE IN SHEAR LOAD







| FOR SINGLE            | ANCHO | OR FAS |      |      | Re   | duction | Factor | $\Psi_{\text{s-c,V}}$ |        |         |        |        |
|-----------------------|-------|--------|------|------|------|---------|--------|-----------------------|--------|---------|--------|--------|
|                       |       |        |      |      |      |         |        | Cracke                | d / No | n-cracl | ced co | ncrete |
| Cmin                  | 1.0   | 1.2    | 1.4  | 1.6  | 1.8  | 2.0     | 2.2    | 2.4                   | 2.6    | 2.8     | 3.0    | 3.2    |
| $\Psi_{\text{s-c,V}}$ | 1.00  | 1.31   | 1.66 | 2.02 | 2.41 | 2.83    | 3.26   | 3.72                  | 4.19   | 4.69    | 5.20   | 5.72   |

0.91 0.79

1.00 0.86

1.00

Edge, c

| FOR 2 AND | FOR 2 ANCHORS FASTENING Reduction Factor $\Psi_{\text{s-c}}$ Cracked / Non-cracked concre |      |      |      |      |      |      |      |      |      |      |      |  |  |
|-----------|-------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|--|--|
| S Cmin    | 1.0                                                                                       | 1.2  | 1.4  | 1.6  | 1.8  | 2.0  | 2.2  | 2.4  | 2.6  | 2.8  | 3.0  | 3.2  |  |  |
| 1.0       | 0.67                                                                                      | 0.84 | 1.03 | 1.22 | 1.43 | 1.65 | 1.88 | 2.12 | 2.36 | 2.62 | 2.89 | 3.16 |  |  |
| 1.5       | 0.75                                                                                      | 0.93 | 1.12 | 1.33 | 1.54 | 1.77 | 2.00 | 2.25 | 2.50 | 2.76 | 3.03 | 3.31 |  |  |
| 2.0       | 0.83                                                                                      | 1.02 | 1.22 | 1.43 | 1.65 | 1.89 | 2.12 | 2.38 | 2.63 | 2.90 | 3.18 | 3.46 |  |  |
| 2.5       | 0.92                                                                                      | 1.11 | 1.32 | 1.54 | 1.77 | 2.00 | 2.25 | 2.50 | 2.77 | 3.04 | 3.32 | 3.61 |  |  |
| 3.0       | 1.00                                                                                      | 1.20 | 1.42 | 1.64 | 1.88 | 2.12 | 2.37 | 2.63 | 2.90 | 3.18 | 3.46 | 3.76 |  |  |
| 3.5       |                                                                                           | 1.30 | 1.52 | 1.75 | 1.99 | 2.24 | 2.50 | 2.76 | 3.04 | 3.32 | 3.61 | 3.91 |  |  |
| 4.0       |                                                                                           |      | 1.62 | 1.86 | 2.10 | 2.36 | 2.62 | 2.89 | 3.17 | 3.46 | 3.75 | 4.05 |  |  |
| 4.5       |                                                                                           |      |      | 1.96 | 2.21 | 2.47 | 2.74 | 3.02 | 3.31 | 3.60 | 3.90 | 4.20 |  |  |
| 5.0       |                                                                                           |      |      |      | 2.33 | 2.59 | 2.87 | 3.15 | 3.44 | 3.74 | 4.04 | 4.35 |  |  |
| 5.5       |                                                                                           |      |      |      |      | 2.71 | 2.99 | 3.28 | 3.57 | 3.88 | 4.19 | 4.50 |  |  |
| 6.0       |                                                                                           |      |      |      |      | 2.83 | 3.11 | 3.41 | 3.71 | 4.02 | 4.33 | 4.65 |  |  |

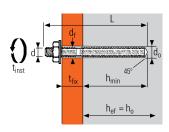
FOR OTHER CASE OF FASTENINGS

$$\Psi_{\text{s-c,V}} = \frac{3c + s_1 + s_2 + s_3 + \dots + s_{n-1}}{3nc_{min}} \cdot \sqrt{\frac{c}{c_{min}}}$$

### **DESIGN GUIDE**

**PAGE 1 OF 4** 

### STAINLESS STEEL ANCHOR STUD(\$\$316) / CHEMSET™


Performance Material Installation

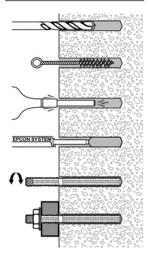
AAA
316

AAA
316



ICC-ES EVALUATION REPORT




#### MATERIAL

Stud / Chemset™: SUS316

Hexagonal Nut: SUS316

Washer: SUS316

#### INSTALLATION



| lechni  | cal Da          | ita              |                |                  |        |                   |        |                   |           |           |                   |
|---------|-----------------|------------------|----------------|------------------|--------|-------------------|--------|-------------------|-----------|-----------|-------------------|
| EPCON   | Anchor          | Max              | Dri <b>ll</b>  | Thick            | Ø      | Ø                 | Total  | Tighten           | Chemset   | Ramset    | Dri <b>ll</b> bit |
| G5      | depth           | thick of         | depth          | of base          | Thread | Dri <b>ll</b> bit | anchor | torque            | stud      | power     | type-size         |
| with    |                 | fixture          |                | materia <b>l</b> |        |                   | length |                   | code      | tool code |                   |
| Chemset |                 |                  |                |                  |        |                   |        |                   |           |           |                   |
| Stud SS | (mm)            | (mm)             | (mm)           | (mm)             | (mm)   | (mm)              | (mm)   | (Nm)              |           |           |                   |
|         | h <sub>ef</sub> | t <sub>fix</sub> | h <sub>o</sub> | h <sub>min</sub> | d      | d <sub>o</sub>    | L      | T <sub>inst</sub> |           |           |                   |
| M8      | 80              | 15               | 80             | 100              | 8      | 10                | 110    | 10                | CS08110SS | DD527     | R3 PLUS-10        |
| M10     | 90              | 20               | 90             | 115              | 10     | 12                | 130    | 20                | CS10130SS | DD527     | R3 PLUS-12        |
| M12     | 110             | 25               | 110            | 140              | 12     | 14                | 160    | 30                | CS12160SS | DD527     | R3 PLUS-14        |
| M16     | 125             | 35               | 125            | 160              | 16     | 18                | 190    | 60                | CS16190SS | DD544     | R3 PLUS-18        |
| M20     | 170             | 65               | 170            | 215              | 20     | 25                | 260    | 120               | CS20260SS | DD565     | R3 MAX-25         |
| M24     | 210             | 63               | 210            | 270              | 24     | 28                | 300    | 200               | CS24300SS | DD565     | R3 MAX-28         |
| M30     | 280             | 70               | 280            | 350              | 30     | 35                | 380    | 400               | CS30380SS | DD565     | R3 MAX-35         |

EPOXY G5 Two part cartridge, 100% epoxy resin - vol. 650ml

| M8   | M10                                | M12                                                     | M16                                                                             | M20                                                                                                                                                                                                                                                         | M24                                                                                                                                                                                                                                                                                                                         | M30                                                                                                                                                                                                                                                                                                                                                                                         |
|------|------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 650  | 650                                | 650                                                     | 650                                                                             | 650                                                                                                                                                                                                                                                         | 650                                                                                                                                                                                                                                                                                                                         | 500                                                                                                                                                                                                                                                                                                                                                                                         |
| 450  | 450                                | 450                                                     | 450                                                                             | 450                                                                                                                                                                                                                                                         | 450                                                                                                                                                                                                                                                                                                                         | 250                                                                                                                                                                                                                                                                                                                                                                                         |
| 36.6 | 58                                 | 84.3                                                    | 157                                                                             | 245                                                                                                                                                                                                                                                         | 353                                                                                                                                                                                                                                                                                                                         | 522.8                                                                                                                                                                                                                                                                                                                                                                                       |
| 31.2 | 62.3                               | 109.2                                                   | 277.5                                                                           | 540.9                                                                                                                                                                                                                                                       | 935.5                                                                                                                                                                                                                                                                                                                       | 1,686.0                                                                                                                                                                                                                                                                                                                                                                                     |
| 24.4 | 48.6                               | 85.2                                                    | 216.4                                                                           | 421.9                                                                                                                                                                                                                                                       | 729.7                                                                                                                                                                                                                                                                                                                       | 1,011.6                                                                                                                                                                                                                                                                                                                                                                                     |
| 15.7 | 31.4                               | 54.9                                                    | 139.6                                                                           | 272.2                                                                                                                                                                                                                                                       | 470.8                                                                                                                                                                                                                                                                                                                       | 652.6                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 650<br>450<br>36.6<br>31.2<br>24.4 | 650 650<br>450 450<br>36.6 58<br>31.2 62.3<br>24.4 48.6 | 650 650 650<br>450 450 450<br>36.6 58 84.3<br>31.2 62.3 109.2<br>24.4 48.6 85.2 | 650         650         650         650           450         450         450         450           36.6         58         84.3         157           31.2         62.3         109.2         277.5           24.4         48.6         85.2         216.4 | 650         650         650         650         650           450         450         450         450         450           36.6         58         84.3         157         245           31.2         62.3         109.2         277.5         540.9           24.4         48.6         85.2         216.4         421.9 | 650         650         650         650         650         650           450         450         450         450         450         450           36.6         58         84.3         157         245         353           31.2         62.3         109.2         277.5         540.9         935.5           24.4         48.6         85.2         216.4         421.9         729.7 |

#### Setting Time before applying load

| r installation (min)<br>8.5<br>12 | Waiting time before applying load (hr) |
|-----------------------------------|----------------------------------------|
| 8.5                               | 2                                      |
| 12                                | 2                                      |
|                                   | Z                                      |
| 15                                | 2                                      |
| 18                                | 3                                      |
| 21                                | 6                                      |
|                                   | 18                                     |

| Chemical Resistance of EPCON G5 Anchor |            |                         |            |  |  |  |  |  |  |
|----------------------------------------|------------|-------------------------|------------|--|--|--|--|--|--|
| Chemical substances                    | Resistance | Chemical substances     | Resistance |  |  |  |  |  |  |
| Xylene                                 | 1          | Toluene                 | 2          |  |  |  |  |  |  |
| Gasoline                               | 1          | 10% Nitric Acid         | 2          |  |  |  |  |  |  |
| 20% Caustic NaOH (Sodium Hydroxide)    | 1          | 8.5% Ammonium Hydroxide | 2          |  |  |  |  |  |  |
| Fresh Water                            | 1          | 5% Bleach               | 3          |  |  |  |  |  |  |
| Salt Water                             | 1          | Acetone                 | 3          |  |  |  |  |  |  |
| 10% Sulfuric Acid (H2 SO4)             | 2          | Glacial Acetic Acid     | 3          |  |  |  |  |  |  |
| 3.5% Hydrochloric Acid (HCL)           | 2          | Methanol                | 3          |  |  |  |  |  |  |
| 9% Phosphoric Acid                     | 2          | Methylene Chloride      | 3          |  |  |  |  |  |  |

- 1 = High resistance (Anchors could be submerged in these materials)
- 2 = Medium resistance (Anchors could be temporary submerged due to splash or spill)
- 3 = Low resistance (Anchors should be limited to splash and spill followed by immediate cleanup)

### STAINLESS STEEL ANCHOR STUD(\$\$316) / CHEMSET™

| Number of Sealings per cartridge |       |       |      |      |      |      |     |
|----------------------------------|-------|-------|------|------|------|------|-----|
| Stud diameter                    | 8     | 10    | 12   | 16   | 20   | 24   | 30  |
| Drilling Ø (mm)                  | 10    | 12    | 14   | 18   | 25   | 28   | 35  |
| Drilling depth (mm)              | 80    | 90    | 110  | 125  | 170  | 210  | 280 |
| No. of anchors per cartridge     |       |       |      |      |      |      |     |
| EPCON G5 (650ml)                 | 206.9 | 127.7 | 76.8 | 40.9 | 15.6 | 10.1 | 4.8 |

#### Ultimate Loads ( $N_{Ru,m}$ , $V_{Ru,m}$ ) / Characteristic Loads ( $N_{Rk}$ , $V_{Rk}$ ) in kN

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size            | M8   | M10  | M12  | M16   | M20   | M24   | M30   |
|------------------------|------|------|------|-------|-------|-------|-------|
| h <sub>ef</sub> (mm)   | 80   | 90   | 110  | 125   | 170   | 210   | 280   |
| N <sub>Ru,m</sub> (kN) | 25.7 | 40.7 | 59.2 | 110.2 | 141.8 | 216.2 | 360.3 |
| N <sub>Rk</sub> (kN)   | 23.8 | 37.7 | 54.8 | 102.1 | 106.3 | 162.1 | 270.2 |

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size            | M8   | M10  | M12  | M16  | M20   | M24   | M30   |
|------------------------|------|------|------|------|-------|-------|-------|
| V <sub>Ru,m</sub> (kN) | 15.4 | 24.4 | 35.5 | 66.1 | 103.2 | 148.7 | 169.4 |
| V <sub>Rk</sub> (kN)   | 14.3 | 22.6 | 32.9 | 61.2 | 95.6  | 137.7 | 156.8 |

#### Design Loads (N<sub>Rd</sub>, V<sub>Rd</sub>) for one anchor without edge or spacing influence in kN

$$N_{Rd} = \ \frac{N_{Rk}}{\gamma_{Mc,N}} \quad or \quad \frac{N_{Rk}}{\gamma_{Ms,N}}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_{Ms,V}}$$

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

|                      |      |      | •    |      |      |      |       |
|----------------------|------|------|------|------|------|------|-------|
| Anchor size          | M8   | M10  | M12  | M16  | M20  | M24  | M30   |
| h <sub>ef</sub> (mm) | 80   | 90   | 110  | 125  | 170  | 210  | 280   |
| N <sub>Rd</sub> (kN) | 15.3 | 24.3 | 35.4 | 65.8 | 59.1 | 90.1 | 150.1 |

$$\gamma_{\text{Mc,N}} = 1.8$$

 $\gamma_{Ms,N}$  = 1.55 (steel failure)

 $\gamma_{\text{Mc,N}}$  = 2.00 (steel failure  $\geq$  M30)

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size          | M8  | M10  | M12  | M16  | M20  | M24  | M30  |
|----------------------|-----|------|------|------|------|------|------|
| V <sub>Rd</sub> (kN) | 9.2 | 14.6 | 21.2 | 39.5 | 61.6 | 88.8 | 78.4 |

 $\gamma_{Ms,V}$  = 1.55 for M8 to M24

 $\gamma_{Ms,V}$  = 2.00 for M30

#### Recommended Loads (N<sub>rec</sub>, V<sub>rec</sub>) for one anchor without edge or spacing influence in kN

$$N_{\text{rec}} = \frac{-N_{\text{Rk}}}{\gamma_{\text{Mc,N}} \cdot \gamma_{\text{F}}} \quad \text{ or } \quad \frac{N_{\text{Rk}}}{\gamma_{\text{Ms,N}} \cdot \gamma_{\text{F}}}$$

$$V_{rec} = \frac{V_{Rk}}{\gamma_{Ms,V} \cdot \gamma_{F}}$$

#### TENSILE @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size           | M8   | M10  | M12  | M16  | M20  | M24  | M30   |
|-----------------------|------|------|------|------|------|------|-------|
| h <sub>ef</sub> (mm)  | 80   | 90   | 110  | 125  | 170  | 210  | 280   |
| N <sub>rec</sub> (kN) | 11.0 | 17.4 | 25.3 | 47.0 | 42.2 | 64.3 | 107.2 |

$$\gamma_{\rm F} = 1.4$$

 $\gamma_{Mc,N} = 1.8$ 

 $\gamma_{Ms,N}$  = 1.55 (steel failure M8 - M24)

 $\gamma_{Mc,N} = 2.00$  (steel failure  $\geq M30$ )

steel failure

#### SHEAR @ Concrete strength 30 N/mm<sup>2</sup>

| Anchor size           | M8  | M10  | M12  | M16  | M20  | M24  | M30  |
|-----------------------|-----|------|------|------|------|------|------|
| V <sub>rec</sub> (kN) | 6.6 | 10.4 | 15.2 | 28.2 | 44.0 | 63.4 | 56.0 |

 $\gamma_{\mathsf{F}} = 1.4$ 

 $\gamma_{\rm Ms,V}$  = 1.55 for M8 to M24

 $\gamma_{\text{Ms,V}}$  = 2.00 for M30

PAGE 3 OF 4

### STAINLESS STEEL ANCHOR STUD(SS316) / CHEMSET™

#### **RAMSET CC-Method**

#### **TENSILE** in kN



Pull-out resistance Concrete strength C25/30

 $N_{Rd,p} = N_{Rd,p} \cdot f_B \cdot f_T$ 

| N <sup>0</sup> <sub>Rd,p</sub>      |      |      |      |      |      |      |       |
|-------------------------------------|------|------|------|------|------|------|-------|
| Anchor size                         | M8   | M10  | M12  | M16  | M20  | M24  | M30   |
| h <sub>ef</sub> (mm)                | 80   | 90   | 110  | 125  | 170  | 210  | 280   |
| N <sup>0</sup> <sub>Rd,p</sub> (kN) | 15.3 | 26.7 | 33.8 | 45.5 | 59.1 | 90.1 | 150.1 |

 $\gamma_{Mc,N} = 1.8$ 



Concrete cone resistance Concrete strength C25/30

 $N_{\text{Rd,c}} = N_{\text{Rd,c}} \cdot f_{\text{B}} \cdot f_{\text{T}} \cdot \Psi_{\text{s}} \cdot \Psi_{\text{c,N}}$ 

| Nº <sub>Rd,p</sub>                  |      |      |      | Des  | sign co | ne resis | stance |
|-------------------------------------|------|------|------|------|---------|----------|--------|
| Anchor size                         | M8   | M10  | M12  | M16  | M20     | M24      | M30    |
| h <sub>ef</sub> (mm)                | 80   | 90   | 110  | 125  | 170     | 210      | 280    |
| N <sup>0</sup> <sub>Rd,c</sub> (kN) | 26.3 | 31.4 | 42.5 | 51.4 | 81.6    | 112.0    | 172.5  |

 $\gamma_{\text{Mc,N}} = 1.5$ 



Steel resistance



| $N_{Rd,s}$             | Steel design tensile resistan |      |      |      |       |       | stance |
|------------------------|-------------------------------|------|------|------|-------|-------|--------|
| Anchor size            | M8                            | M10  | M12  | M16  | M20   | M24   | M30    |
| N <sub>Rd,s</sub> (kN) | 15.3                          | 24.3 | 35.4 | 65.8 | 102.7 | 148.0 | 130.7  |

 $\gamma_{Ms,N}$  = 1.55 for M8 to M24

 $\gamma_{\text{Ms,N}}$  = 2.00 for M30

 $N_{Rd} = min (N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$  $\beta N = N_{Sd} / N_{Rd} \le 1$ 

#### SHEAR in kN



Concrete edge resistance Concrete strength C25/30

 $V_{Rd,c} = V_{Rd,c}^0 \cdot f_B \cdot f_{\beta,V} \cdot \Psi_{s-c,V}$ 

| V <sup>0</sup> <sub>Rd,c</sub>      |     |     | Design concrete edge resistance at a minimum edge distance (c <sub>min</sub> ) |     |      |      |      |
|-------------------------------------|-----|-----|--------------------------------------------------------------------------------|-----|------|------|------|
| Anchor size                         | M8  | M10 | M12                                                                            | M16 | M20  | M24  | M30  |
| h <sub>ef</sub> (mm)                | 80  | 90  | 110                                                                            | 125 | 170  | 210  | 280  |
| C <sub>min</sub>                    | 40  | 45  | 55                                                                             | 65  | 85   | 105  | 140  |
| s <sub>min</sub>                    | 40  | 45  | 55                                                                             | 65  | 85   | 105  | 140  |
| V <sup>0</sup> <sub>Rd,c</sub> (kN) | 2.6 | 3.4 | 5.1                                                                            | 7.3 | 12.4 | 18.7 | 32.6 |

 $\gamma_{Mc,V} = 1.5$ 



Steel resistance

| $V_{Rd,s}$             | Steel design shear resistance |      |      |      |      |      |      |
|------------------------|-------------------------------|------|------|------|------|------|------|
| Anchor size            | M8                            | M10  | M12  | M16  | M20  | M24  | M30  |
| V <sub>Rd,s</sub> (kN) | 9.2                           | 14.6 | 21.2 | 39.5 | 61.6 | 88.8 | 78.4 |

 $\gamma_{\rm Ms,V}$  = 1.55 for M8 to M24

 $\gamma_{Ms,V}$  = 2.00 for M30



Concrete pry-out failure Concrete Strength C25/30

 $V_{\text{Rd,cp}} = V^0_{\text{Rd,cp}} \cdot f_{\text{B}} \cdot \Psi_{\text{s}} \cdot \Psi_{\text{c,N}}$ 

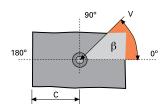
| $V_{Rd,cp}$                          | Design pry-out resistance |      |      |       |       |       |       |
|--------------------------------------|---------------------------|------|------|-------|-------|-------|-------|
| Anchor size                          | M8                        | M10  | M12  | M16   | M20   | M24   | M30   |
| V <sup>0</sup> <sub>Rd,cp</sub> (kN) | 52.7                      | 62.9 | 84.9 | 102.9 | 163.2 | 224.0 | 344.9 |

 $\gamma_{Ms,V} = 1.5$ 

 $\begin{aligned} V_{Rd} &= min \; (V_{Rd,c} \; ; \; V_{Rd,s}; \; V_{Rd,cp} \; ) \\ \beta V &= V_{Sd} \; / \; V_{Rd} \leq 1 \end{aligned}$ 

 $\beta$ N +  $\beta$ V  $\leq$  1.2

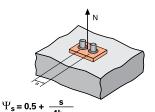
#### f<sub>B</sub> INFLUENCE OF CONCRETE


| C | Concrete Grade | $\mathbf{f}_{B}$ | Concrete Grade | $\mathbf{f}_{B}$ |
|---|----------------|------------------|----------------|------------------|
|   | C16/20         | 0.81             | C35/45         | 1.21             |
|   | C20/25         | 0.90             | C40/50         | 1.28             |
|   | C25/30         | 1.00             | C45/55         | 1.34             |
|   | C30/37         | 1.10             | C50/60         | 1.40             |

#### INFLUENCE OF EMBEDMENT DEPTH

$$f_T = \frac{h_{act}}{h_{of}}$$

### f<sub>β.v</sub> INFLUENCE OF SHEAR LOADING DIRECTION


| Angle $\beta$ [°] | $\mathbf{f}_{\beta,\mathbf{V}}$ |
|-------------------|---------------------------------|
| 0~50              | 1.0                             |
| 60                | 1.1                             |
| 70                | 1.2                             |
| 80                | 1.5                             |
| 90~180            | 2.0                             |



### STAINLESS STEEL ANCHOR STUD(\$\$316) / CHEMSET™

#### **RAMSET CC-Method**

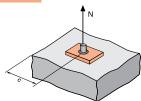
#### INFLUENCE OF SPACING FOR CONCRETE



 $s_{min} = 0.5h_{ef}$ 

 $s_{cr,N} = 2h_{ef}$ 

 $\Psi_{\textbf{s}}$  must be used for each spacing influenced the anchors group


| Spacing, s | Reduction Factor $\Psi_{	extsf{s}}$ |
|------------|-------------------------------------|
|            | Cracked / Non-cracked concrete      |
|            |                                     |

|     | M8   | M10  | M12  | M16  |
|-----|------|------|------|------|
| 40  | 0.63 |      |      |      |
| 45  | 0.64 | 0.63 |      |      |
| 55  | 0.67 | 0.65 | 0.63 |      |
| 65  | 0.70 | 0.68 | 0.65 | 0.63 |
| 85  | 0.77 | 0.74 | 0.69 | 0.67 |
| 105 | 0.83 | 0.79 | 0.74 | 0.71 |
| 140 | 0.94 | 0.89 | 0.82 | 0.78 |
| 160 | 1.00 | 0.94 | 0.86 | 0.82 |
| 180 |      | 1.00 | 0.91 | 0.86 |
| 220 |      |      | 1.00 | 0.94 |
| 250 |      |      |      | 1.00 |
|     |      |      |      |      |

Spacing, s Reduction Factor  $\Psi_s$ Cracked / Non-cracked concrete

|     | M20  | M24  | M30  |
|-----|------|------|------|
| 85  | 0.63 |      |      |
| 105 | 0.65 | 0.63 |      |
| 140 | 0.71 | 0.67 | 0.63 |
| 160 | 0.74 | 0.69 | 0.64 |
| 180 | 0.76 | 0.71 | 0.66 |
| 220 | 0.82 | 0.76 | 0.70 |
| 250 | 0.87 | 0.80 | 0.72 |
| 300 | 0.94 | 0.86 | 0.77 |
| 340 | 1.00 | 0.90 | 0.80 |
| 370 |      | 0.94 | 0.83 |
| 420 |      | 1.00 | 0.88 |
| 560 |      |      | 1.00 |

#### INFLUENCE OF EDGE FOR CONCRETE



 $\Psi_{\text{c,N}}$  = 0.275 + 0.725 .

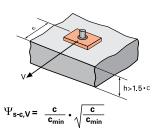
c < c<sub>cr,N</sub>

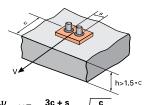
 $c_{min} = 0.5h_{ef}$ 

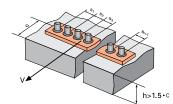
 $c_{cr,N} = h_{ef}$ 

 $\Psi_{ extsf{c,N}}$  must be used for each distance influenced the anchors group

#### Edge, c Reduction Factor $\Psi_{c,N}$ Cracked / Non-cracked concrete


|     | M8   | M10  | M12  | M16  |
|-----|------|------|------|------|
| 40  | 0.63 |      |      |      |
| 45  | 0.68 | 0.63 |      |      |
| 55  | 0.77 | 0.71 | 0.63 |      |
| 65  | 0.86 | 0.79 | 0.70 | 0.65 |
| 80  | 1.00 | 0.91 | 0.80 | 0.73 |
| 90  |      | 1.00 | 0.86 | 0.79 |
| 110 |      |      | 1.00 | 0.91 |
| 125 |      |      |      | 1.00 |


Edge, c Reduction Factor  $\Psi_{c,N}$ Cracked / Non-cracked concrete


|     | M20  | M24  | M30  |
|-----|------|------|------|
| 85  | 0.63 |      |      |
| 105 | 0.72 | 0.63 |      |
| 120 | 0.78 | 0.68 |      |
| 140 | 0.87 | 0.75 | 0.63 |
| 170 | 1.00 | 0.86 | 0.71 |
| 210 |      | 1.00 | 0.81 |
| 250 |      |      | 0.92 |
| 280 |      |      | 1.00 |

Reduction Factor  $\Psi_{\text{s-c,V}}$ 

#### INFLUENCED OF SPACING AND EDGE DISTANCE FOR CONCRETE EDGE RESISTANCE IN SHEAR LOAD







#### FOR SINGLE ANCHOR FASTENING

Reduction Factor  $\Psi_{s-c,V}$ Cracked / Non-cracked concrete 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.2 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72  $\Psi_{\text{s-c,V}}$ 1.00 1.31

#### FOR 2 ANCHORS FASTENING

Cracked / Non-cracked concrete 3.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Cmin 1.0 0.67 0.84 1.03 1.22 1.43 1.65 1.88 2.12 2.36 2.62 0.93 1.12 1.33 1.54 1.77 2.00 2.25 2.50 2.76 1.5

| 2.0 | 0.63 | 1.02 | 1.22 | 1.43 | 1.00 | 1.09 | 2.12 | 2.30 | 2.03 | 2.90 | 3.10 | 3.40 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|
| 2.5 | 0.92 | 1.11 | 1.32 | 1.54 | 1.77 | 2.00 | 2.25 | 2.50 | 2.77 | 3.04 | 3.32 | 3.61 |
| 3.0 | 1.00 | 1.20 | 1.42 | 1.64 | 1.88 | 2.12 | 2.37 | 2.63 | 2.90 | 3.18 | 3.46 | 3.76 |
| 3.5 |      | 1.30 | 1.52 | 1.75 | 1.99 | 2.24 | 2.50 | 2.76 | 3.04 | 3.32 | 3.61 | 3.91 |
| 4.0 |      |      | 1.62 | 1.86 | 2.10 | 2.36 | 2.62 | 2.89 | 3.17 | 3.46 | 3.75 | 4.05 |
| 4.5 |      |      |      | 1.96 | 2.21 | 2.47 | 2.74 | 3.02 | 3.31 | 3.60 | 3.90 | 4.20 |
| 5.0 |      |      |      |      | 2.33 | 2.59 | 2.87 | 3.15 | 3.44 | 3.74 | 4.04 | 4.35 |
| 5.5 |      |      |      |      |      | 2.71 | 2.99 | 3.28 | 3.57 | 3.88 | 4.19 | 4.50 |
| 6.0 |      |      |      |      |      | 2.83 | 3.11 | 3.41 | 3.71 | 4.02 | 4.33 | 4.65 |
|     |      |      |      |      |      |      |      |      |      |      |      |      |

#### FOR OTHER CASE OF FASTENINGS

$$\Psi_{\text{s-c,V}} = \frac{3c + s_1 + s_2 + s_3 + \dots + s_{n-1}}{3nc_{\text{min}}} \cdot \sqrt{\frac{c}{c_{\text{min}}}}$$



#### SETSCO SERVICES PTE LTD

18 Teban Gardens Crescent Singapore 608925 Tel: (65) 6566 7777 Fax: (65) 6566 7718 Website: www.setsco.com Business Reg. No. 196900269D

#### TEST REPORT

(This Report is issued subject to the terms & conditions set out below)

Our Ref: ST 8684/1

Date: 25th April 2011

Page:1 of 5

### TENSILE PULL-OUT TEST ON VARIOUS SIZES OF REBARS INSTALLED INTO THE CONCRETE BLOCK WITH RAMSET EPCON G5 FOR THE PROPOSED MCE PROJECT C483

#### Prepared For:

#### ITW CONSTRUCTION PRODUCTS ( SEA ) PTE LTD

No.8, Kaki Bukit Road 2 #02-34, Ruby Warehouse Complex Singapore 417841 Attn:- Mr Siang Peng Lam

#### Work Carried Out By:

Michael Gurusamy

#### Witnesses Of Test:

- Mr Aung (RJC)
- (2) Mr Mark Lester Ramirez (Samsung)
- (3) Mr Henry (Samsung)
- (4) Mr Siang Peng Lam (ITW)

#### Report Prepared By:

How Yong Meng





ST 8684-1/hym

Terms & Conditions:

- (1) The Report is prepared for the sole use of the Client and is prepared based upon the Item submitted, the Services required by the Client and the conditions under which the Services are performed by SETSCO. The Report is not intended to be representative of similar or equivalent Services on similar or equivalent items. The Report does not constitute an endorsement by SETSCO of the Item.

  (2) SETSCO agrees to use reasonable difigence in the performance of the Services but no warranties are given and none may be implied directly or indirectly relating to the Services, the Report or the facilities
- of SETSCO.
- (3) The Report may not be used in any publicity material without the written consent of SETSCO.
- (4) The Report may not be reproduced in part or in full unless approval in writing has been given by SETSCO.
  (5) SETSCO shall under no circumstances be liable to the Client or its agents, servants or representatives, in contract, tort (including negligence or breach of statutory duty) or otherwise for any direct or indirect loss or damage suffered by the Client, its agents, servants or representatives howsoever arising or whether connected with the Services provided by SETSCO herein



The results reported herein have been performed in accordance with the laboratory's terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme's LA-1994-0068-A, LA-1987-0001-B, LA-1993-0067-G, LA-1993-0051-C, LA-1998-0144-D, LA-2000-0181-F





ST 8684/1

Page 2 of 5

### CONTENT

| 1.0 | INTRODUCTION                                |
|-----|---------------------------------------------|
| 2.0 | OBJECTIVE                                   |
| 3.0 | DESCRIPTION OF TEST SPECIMENS & PREPARATION |
| 4.0 | TESTING PROCEDURE                           |
| 5.0 | RESULTS                                     |

#### **APPENDICES**

Appendix A - Technical Specifications of Ramset Epcon G5 (provided by client)

Appendix B - Method Statement for Rebars Installation with Ramset Epcon G5 (provided by the client)

Appendix C - Method Statement Of Performing Pull Out Test

Appendix D - Calibration Reports Of Equipment Used

#### **ANNEXES**

Annex - Photographs of mode of failures









ST 8684/1

Page 3 of 5

#### 1.0 <u>INTRODUCTION</u>

SETSCO Services Pte Ltd ( SETSCO ) was engaged by M/s ITW Construction Products ( SEA ) Pte Ltd to conduct a Tensile pull-out test on rebars of sizes:-T13, T16, T20, T22, T25, T32 and T40 installed into the Grade 40 ( as advised by the client ) un-reinforced concrete blocks with Ramset Epcon G5 injection systems.

The above test was conducted on 19<sup>th</sup> and 21<sup>st</sup> April 2011 at Marina Coastal Expressway C483 project site located at Marina South.

#### 2.0 OBJECTIVE

To determine the maximum force required to pull out the various sizes of Rebars installed with Ramset Epcon G5 chemical capsules into the Grade 40 concrete block and the corresponding mode of failure encountered.

#### 3.0 DESCRIPTION OF TEST SPECIMENS AND PREPARATION

The test specimens for this exercise are as follows:-

- 3 nos of T13 rebars installed with Ramset Epcon G5 injection system with embedment depth of 160mm,
- 3 nos of T16 rebars installed with Ramset Epcon G5 injection system with embedment depth of 195mm,
- 3 nos of T20 rebars installed with Ramset Epcon G5 injection system with embedment depth of 240mm,
- 3 nos of T22 rebars installed with Ramset Epcon G5 injection system with embedment depth of 300mm,
- 3 nos of T25 rebars installed with Ramset Epcon G5 injection system with embedment depth of 300mm,
- 3 nos of T32 rebars installed with Ramset Epcon G5 injection system with embedment depth of 480mm,
- 3 nos of T40 rebars installed with Ramset Epcon G5 injection system with embedment depth of 480mm.







ST 8684/1

Page 4 of 5

All the above test specimens were installed into the Grade 40 (as advised by the client) concrete blocks and the method of installation are as in accordance to the proposed Method Statement for Rebars installation using Ramset Epcon G5 injection system, witnessed by the client's contractor and consultant. This method statement as provided by the client are as attached in the Appendix B while the technical specification of the injection system (Ramset Epcon G5) used are as presented in Appendix A.

All the rebars installed by the client themselves with the Ramset Epcon G5 are done one ( 01 ) day prior to the test date so that the injection system would have sufficient time to cure to attain their full strength.

#### 4.0 TESTING PROCEDURE

The test was carried out adopted from <u>BS 5080 : Part 1 : 1993</u> where no displacement measurement was carried out during the course of loading. In addition, the size of the system supports ( reaction frame ) used is smaller than that recommended. In using such smaller support systems, the concrete around the installed rebars will be restraint when a load was applied onto the test specimens. ( due to a opposite reaction force acting onto the reaction frame ).

A detailed Method Statement of performing the above test are as attached in Appendix C while the calibration certificates of the test equipment used ( hydraulic pump with jack and pressure gauges ) are as presented in Appendix D.

Photographs showing the test specimens after test are as presented in the Annex.









ST 8684/1

Page 5 of 5

#### 5.0 RESULTS

| Sample<br>Ref | Fixing<br>Type | Embedment<br>depth**<br>(mm) | Applied<br>Load<br>( kN) | Mean<br>(kN) | Std<br>Deviation | Observation(s)   |
|---------------|----------------|------------------------------|--------------------------|--------------|------------------|------------------|
| T1            |                |                              | 79.1                     |              |                  | Rebar fracture   |
| T2            | T13<br>rebars  | 160                          | 72.8                     | 77.0         | 3.6              | Concrete failure |
| T3            |                |                              | 77.1                     |              |                  | Rebar fracture   |
| T4            |                | ,                            | 129.5                    |              |                  | Rebar fracture   |
| T5            | T16<br>rebars  | 195                          | 129.5                    | 129.5        | 0.0              | Rebar fracture   |
| T6            |                |                              | 129.5                    |              |                  | Rebar fracture   |
| T7            |                |                              | 180.8                    |              |                  | Rebar fracture   |
| T8            | T20<br>rebars  | 240                          | 169.5                    | 188.4        | 23.6             | Rebar fracture   |
| Т9            |                |                              | 214.9                    |              |                  | Rebar fracture   |
| T10           |                |                              | 214.9                    |              |                  | Rebar fracture   |
| T11           | T22<br>rebars  | 300                          | 214.9                    | 214.9        | 0                | Rebar fracture   |
| T12           |                |                              | 214.9                    |              |                  | Rebar Fracture   |
| T22           |                |                              | 283.0                    |              |                  | Rebar fracture   |
| T23           | T25<br>rebars  | 300                          | 294.4                    | 290.6        | 6.6              | Rebar fracture   |
| T24           |                |                              | 294.4                    |              |                  | Rebar fracture   |
| T16           |                |                              | 510.2*                   |              |                  | No failure       |
| T17           | T32<br>rebars  | 455                          | 510.2*                   | -            | -                | No failure       |
| T18           | 130013         |                              | 510.2*                   |              |                  | No failure       |
| T19           |                |                              | 510.2*                   |              |                  | No failure       |
| T20           | T40<br>rebars  | 480                          | 510.2*                   | -            | -                | No failure       |
| T21           |                |                              | 510.2*                   |              |                  | No failure       |

Note:- '\*' no further increase in loading is possible as the maximum capacity of the jack used had been reached.

'\*\*' information provided by the client

Mike







#### **NSF Product and Service Listings**

These NSF Official Listings are current as of Thursday, July 19, 2012 at 12:15 a.m. Eastern Time. Please contact NSF International to confirm the status of any Listing, report errors, or make suggestions.

Alert: NSF is concerned about fraudulent downloading and manipulation of website text. Always confirm this information by clicking on the below link for the most accurate information: http://www.nsf.org/Certified/PwsComponents/Listings.asp?Company=23610&Standard=061&

### **NSF/ANSI STANDARD 61 Drinking Water System Components - Health Effects**

NOTE: Unless otherwise indicated for Materials, Certification is only for the Water Contact Material shown in the Listing. Click here for a list of Abbreviations used in these Listings.

#### ITW Red Head

2171 Executive Drive Suite 100 Addison, IL 60101 **United States** 800-899-7890 630-694-4740 Visit this company's website

Facility: Elk Grove Village, IL

| Trade Designation | Size | Water<br>Contact<br>Temp | Water<br>Contact<br>Material |
|-------------------|------|--------------------------|------------------------------|
| Adhesives         |      |                          |                              |
| Epcon A7 Adhesive | [1]  | CLD 23                   | ACR                          |
| Epcon C6 Epoxy[2] | [1]  | CLD 23                   | EPOXY                        |
| Epcon G5          | [1]  | CLD 23                   | EPOXY                        |

<sup>[1]</sup> Certified for use at a maximum surface area to volume ratio of 0.0005 sq. in./L in a

Joining and Sealing Materials

Number of matching Manufacturers is 1 Number of matching Products is 3 Processing time was 0 seconds

- Search Listings
- News Room



<sup>[2]</sup> Only products bearing the NSF Mark are Certified.

ITW Construction Products (SEA) Pte Ltd 8 Kaki Bukit Road 2, #02-34 Ruby Warehouse Complex Singapore 417841

Dear Sir

### APPLICATION FOR LISTING IN HDB'S MATERIALS LIST - STRUCTURAL PRODUCTS

We refer to your application dated 17 March 2011.

2. We have no objection for the following product to be listed in the Building & Infrastructure Department's internet website, <a href="http://www.eptc.sq">http://www.eptc.sq</a> under HDB's Materials List (ML): -

#### **Section: Structural Products**

Classification: Anchor Bolt (for G20 concrete & above)

Product: Medium Duty Mechanical Anchor Brand / Model: Ramset, Trubolt M12x120

#### **Section: Structural Products**

Classification: Anchor Bolt (for G20 concrete & above)

Product: Heavy Duty Mechanical Anchor

Brand / Model: Ramset, Triga Z Type V, M12x130

#### **Section: Structural Products**

Classification: Anchor Bolt (for G20 concrete & above)

Product: Cartridge Injection Chemical Anchor Brand / Model: Ramset Epcon G5, M12x160

#### **Section: Structural Products**

Classification: Anchor Bolt (for G20 concrete & above)

Product : Cartridge Injection Chemical Anchor Brand / Model : Ramset Epcon G5 M10x130

- 3. The listing in HDB's ML is subject to the following conditions:
- a) HDB reserves the right to review the performance and testing requirements at any time.
- b) The listing in our ML does not relieve you the responsibility for the due performance of the product and compliance with HDB project specifications and drawings. Your product will be removed from the ML should we discover any lapse in quality standard or product performance.
- c) None of the product's part, mixture, chemical constituents or brands name shall be altered. Any such alteration without prior acceptance by HDB will lead to automatic suspension of the product from the ML when discovered.
- d) The supplier shall inform HDB if there is any change of the manufacturer or production plant location
- e) Name of HDB or contents of this letter must not be used or quoted in any forms of advertisement, brochure or publication of the product.
- f) Your product may be subjected to site or factory sampling test. Following the product sampling by our officers, you are required to send the sample for laboratory testing. All testing cost incurred shall be borne by you. The test report can be submitted for renewal applications.
- 4. The listing for this product will expire on <u>31 May 2014</u>. Please apply for renewal of this listing 3 months before the expiry date.
- 5. Please contact Senior Technical Officer Mr. Wu Ser Luen at Tel No: 64902548 if you need any further information or clarification.

Yours faithfully

#### Tham Yew Cheong

Senior Executive Building Officer Building & Infrastructure Department Housing & Development Board



#### **PROJECT**

MRT A&A DSMRT545K0

#### **APPLICATION**

#### CONTRACTOR

**OKH Construction** 

| Circle Line C822       | Starter bar - beams / slabs | Econ-NCC JV                           |
|------------------------|-----------------------------|---------------------------------------|
| Circle Line C823       | Strut Fixing                | Nishimatsu-LumChang JV                |
| Circle Line C828       | Bracket Fixing              | Gin Lee Construction                  |
| Circle Line C853       | Starter bar - slabs         | Taisei Corporation                    |
| Circle Line C856       | Starter bar - slabs         | Sembawang E&C                         |
| Circle Line C8282      | Starter bar - slabs         | Chye Joo Construction                 |
| Downtown line C901     | Starter bar - slabs         | Hock Lian Seng                        |
| Downtown line C905     | Starter bar - slabs         | Shimizu                               |
| Downtown line C907     | Starter bar - slabs         | Wai Fong Construction                 |
| Downtown line C909     | Starter bar - slabs         | VSL                                   |
| Downtown line C912     | Starter bar - slabs         | <b>Lum Chang Building Contractors</b> |
| Downtown line C929A    | Starter bar - slabs         | Nishimatsu                            |
| Downtown line C935     | Starter bar - slabs         | Leighton Offshore / John Holland      |
| Downtown line 3 C923   | Starter bar - slabs         | Samsung C & T Corporation             |
| Downtown line 3 C933   | Starter bar - slabs         | Penta Ocean Construction Co Ltd       |
| Tuas MRT Extension     | Starter bar                 | Shanghai Tunnel                       |
| Bridge Upgrading RD111 | Starter bar - beams         | Singapore Piling & Civil Engineering  |
| Bridge Upgrading RD113 | Starter bar - beams         | Singapore Piling & Civil Engineering  |
| Bridge Upgrading RD138 | Starter bar - beams         | Singapore Piling & Civil Engineering  |
| Bridge Upgrading RD107 | Starter bar - beams / slab  | Chye Joo Construction                 |
| Bridge Widening RD104  | Starter bar - beams / slab  | Chye Joo Construction                 |
| RD145                  | Starter bar - beams         | Chye Joo Construction                 |
| KPE C421               | Starter bar - slabs         | Sembcorp E&C                          |
|                        |                             |                                       |

TRANSPORTATION FACILITIES
Square Steel Hollow Section Fixing

KPE C424

KPE C425

KPE C426

Starter bar – slabs

KPE C426

Starter bar - slabs

Starter bar - slabs

Starter bar - slabs

Starter bar - slabs

Covered walkway posts

BM101 Bridge Walkway

Covered walkway posts

PPSE C3223A Railings Fixings
Terminal 3 Railings Fixings

#### **GOVERNMENT BUILDINGS**

New Supreme CourtStarter bar - CBP WallSato Kogyo (S)Redevelopment of Singapore MuseumStarter bar - columnsSato Kogyo (S)Singapore Arts CentreStarter bar - slabsSato Kogyo (S)New Civil Service Club, Bukit BatokStarter bar - beamsLian Soon ConstructionLaw Enforcement Agency SingaporeStarter bar - CBP wallLian Soon ConstructionTiong Seng Construction



**Taisei Corporation** 

Sato Kogyo (S)

Chan & Chan Construction

Win Kiong Engineering Service

**United Central Engineering** 

**United Central Engineering** 

**Chye Joo Construction** 

**Diethelm Singapore** 

| PROJECT                              | APPLICATION                          | CONTRACTOR                           |
|--------------------------------------|--------------------------------------|--------------------------------------|
|                                      | <b>EDUCATION FACILITIES</b>          |                                      |
| Yishun Secondary School              | Starter bars - cantilever slabs      | Lian Soon Construction               |
| Nanyang Junior College               | Starter bar                          | Quek Hock Seng Construction          |
| Victoria School                      | Starter bar                          | Kay Lim Construction & Trading       |
| Changkat Primary School              | Starter bar                          | Kay Lim Construction & Trading       |
| Saint Andrew Village A&A             | Starter bar                          | SEF Construction                     |
|                                      |                                      | China Construction (SP)              |
| NTU School of Biological Science     | Starter bar                          | China Construction (SP)              |
| Raffles Junior College               | Starter bar - cantilever staircase   | Guan Ho Construction Co.             |
| Eunos Primary School                 | Starter bar                          | Chiu Teng Construction               |
| Dunman Secondary School              | Starter bar                          | Chiu Teng Construction               |
| NTU Teaching & Laboratory Facilities | Starter bar                          | Sato Kogyo (S)                       |
| SMU                                  | Starter bar                          | Koon Seng Construction               |
| Queenstown Secondary School          | Starter bar                          | Quek Hock Seng Construction          |
| Maha Bohdi School                    | Starter bar                          | Chiu Teng Enterprise BCEG JV         |
| Australia International School       | Starter bar - slab extension         | G. James Singapore                   |
| Yong Loo Lin School of Medcine (NUS) |                                      | Lian Soon Construction               |
| St. Andrew Autism Centre             |                                      | Kian Hiap Construction               |
| Prince Charles Primary School        |                                      | Kwan Yong Construction Pte Ltd       |
| Ngee Ann Polytechnic                 |                                      | Kwan Yong Construction Pte Ltd       |
| SIT at Singapore Polytechnic         |                                      | Koon Seng Construction Pte Ltd       |
| Yale-NUS College                     |                                      | Ssangyong Engineering & Construction |
| Co Ltd                               |                                      |                                      |
|                                      | <b>PUBLIC WATER FACILITIES</b>       |                                      |
| Changi Water Reclamation Plant       | Starter bar – Diaphragm Wall / slabs | LTH Engineering                      |
|                                      |                                      | Sembcorp E&C                         |
|                                      |                                      | Singapore Piling & Civil Engineering |
| Deep Tunnel System                   |                                      | Koh Brothers Construction            |
|                                      |                                      | Sembcorp E&C                         |
| New Water Pipeline                   | Pipeline Bracket Fixings             | Toh Ban Seng Contractor              |
|                                      |                                      | HSC Pipeline Engineering             |



| PROJECT                         | APPLICATION                            | CONTRACTOR                            |
|---------------------------------|----------------------------------------|---------------------------------------|
|                                 | <b>RESIDENTIAL BUILDINGS</b>           |                                       |
| Hamilton Scotts                 | Starter bar - beam / slabs             | Yau Lee Construction                  |
| Compassvale View                | Starter bar - beam / columns           | Qingdao Construction                  |
| Fernvale Vista                  | Starter bar - beam / columns           | Qingdao Construction                  |
| HDB Punggol C5A                 | Starter bar - slabs / pilecaps         | Kay Lim Construction                  |
| HDB Sengkang N2C36              |                                        | Kay Lim Construction                  |
| HDB Punggol W C7                | Starter bar - beam                     | Kay Lim Construction                  |
| HDB Seng Kang N4C24             |                                        | QingJian International                |
| BTO at Punggol                  |                                        | Poh Cheong Concrete Product Pte. Ltd. |
| LUP42A                          | Starter bar - slab / wall              | Hock Guan Cheong                      |
| Water Bay                       |                                        | QingJian International                |
| Topiary                         |                                        | QingJian International                |
| Caribbean                       | Bracket Fixing                         | Yodai Windows System Engineering      |
| Saint Regis Hotels & Apartments | Starter bar - CBP wall / slabs / beams | Kajima-Tiong Seng JV                  |
| Riveria                         | Starter bar                            | Chip Eng Seng Contractors (1988)      |
| Newton Suite                    | Starter bar                            | Kajima Overseas Asia                  |
| Admore Park                     | Starter bar - slabs                    | Shimizu Corporation                   |
| The Metz                        |                                        | Shimizu Corporation                   |
| Evelyn                          |                                        | Shimizu Corporation                   |
| RiverEdge                       | Starter bar - slabs                    | Tiong Seng Contractors                |
| Hillview Regency                |                                        | Poh Lian Construction                 |
| Paterson Residence              | Starter bar - CBP wall                 | China Construction (SP)               |
| One Amber                       | Starter bar - CBP Wall                 | China Construction (SP)               |
| The Chuan                       | Starter bar - CBP wall                 | Low Keng Huat (S)                     |
| Orange Groove Condominium       | Starter bar - CBP wall / slabs         | Wee Hur Construction                  |
| La-Belle Townhouse              |                                        | Wai Fong Construction                 |
| 2rvg                            | Starter bar - CBP wall / slabs         | Chiu Teng Enterprises                 |
| No.11 Astrid Hill               |                                        | Daiya Engineering & Construction      |
| Balestier Scenic Heights        |                                        | Dbcorp Industries                     |
| Solitaire Condominium           | Starter bar-retaining wall/slab/beam   | Poh Lian Construction                 |
| Draycott Condominium            | Starter slab - CBP wall                | Tiong Seng Contractors                |
| Nova 88 Condominium             |                                        | Admin Construction                    |
| Nova 48 Condominium             |                                        | Admin Construction                    |
| Halia Cluster Housing           |                                        | GTMS Construction                     |
| Alexis Condominium              | Starter slab - CBP wall                | Kian Hiap Construction                |
| D'Leedon Condominium            | Starter bar                            | Woh Hup (Private) Ltd.                |
| Leedon Heights                  | Starter bar                            | Woh Hup (Private) Ltd.                |
| EuHabitat                       | Starter bar                            | Woh Hup (Private) Ltd.                |
| YTL Westwood                    | Starter bar                            | YTL Construction (S) Pte. Ltd.        |
| River Isle                      | Starter bar                            | NQC                                   |
| A Treasure Trove                | Starter bar                            | Sim Lian Construction Co. Pte. Ltd.   |
| West Shore Residences           | Starter bar                            | Ang Cheng Guan Construction Pte. Ltd. |

**PROJECT APPLICATION** CONTRACTOR **FACTORIES** JTC Factory 161 Kallang Way Interpo Light Industrial Factory @ Jalan Kilang Starter bar - CBP wall V3 Construction Micron (MSA 1.5 Project) Sato Kogyo (S) **Project Eureka** Kajima Overseas Asia Pan Tech Industrial Building Win Kiong Engineering Service **Biopolis Bracket fixing** InnoVision Façade **BTR Singapore Adhesive for Anchor Bolts Hiap Seng Engineering Ltd** Silo Plant at Jurong Port Road YTL Construction (S) Pte. Ltd. **COMMERCIAL OR MIXED DEVELOPMENT South Beach Mixed Development** Starter bar - beams Hyundai E & C **Doo Song Construction Co Ltd Marina Bay Sands Integrated Resorts** Starter bar - CBP Wall/Slabs/Beams Sato Kogyo (S) Sembawang E&C **Shanghai Tunnel** L & M Foundation OG Complex A & A Starter bars Wing Tuck **One Raffles Quay** Starter bar - slabs / beams **Obayashi Corporation** Gammon Skanska **Hilton Hotel Temporary works Hock Keng Heng HSBC Threaded studs for Temporary Works Hock Keng Heng Mercedes Showroom** Starter bar - beams / slabs Gammon Skanska Ginza Plaza A&A Starter bar **Vigcon Construction CBP Wall** Somerset UOL Building Kajima Overseas Asia **Scotts Square Shimizu Corporation** Paya Lebar Square Starter bars Low Kheng Huat (S) **UOB Centre** A & A **Gennal Industries TET Engineering & Metal Works Bugis Junction** A & A **TET Engineering & Metal Works** 



**PROJECT** 

**APPLICATION** 

CONTRACTOR

**PSA Tanjong Pagar Reefer Wharf** 

**PSA Tanjong Pagar Slab Upgrading** 

**PSA Brani Terminal Loyang Marine Base** 

**Jurong Shipyard PSA Beam Strengthening**  Starter bar - slabs Starter bar - beams

Starter bar Starter bar

Starter bar - beams

**Eng Lee Engineering United Specialist United Specialist** 

**DGS** 

**Jurong Engineering** 

Muhibbah Engineering (S'pore)

**OTHERS** 

**MARINE WORKS** 

**Sports Hub** Starter bar - slabs / beams

Gardens by the Bay

Pasir Ris Sports Hub Ng Teng Fong Hospital

**Merlion Park** 

Mohd. Sultan Road Art Centre

**Buddha Tooth Temple** 

**Singapore Flyers Sentosa Cove Bus Terminal** Art & Science Museum

SP Power Grid EW3

Starter bar

Starter bar - beams Starter bar - beams

Starter bar - CBP wall / beams

Starter bar Road kerb Starter bar **Dragages** 

**Quek Hock Seng** Penta Ocean **Antara Koh** 

**Building Structural Inspection** 

Sato Kogyo (S) Takenaka Gammon

**Penta Ocean Corporation** 

Nishimatsu Construction & KTC JV

